Verteilungsfunktion < Stochastik < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 15:48 Di 11.12.2007 | Autor: | Elbi |
Aufgabe | Y sei exponentialverteilt mit [mm]\lambda>0[/mm]
[mm]Z=1-e^{- \lambda Y}[/mm]
a) Bestimmen Sie die Verteilungsfunktion von [mm]F^Z[/mm].
b) Berechnen Sie EY und EZ. |
Hallo
also ich bin mir nicht sicher ob ich die Aufgabe richtig verstehe. Y ist exponentialverteilt, das heißt ja:
[mm]f^Y(t)=\begin{cases} \lambda e^{-\lambda t}, & \mbox{für } t \ge 0\\ 0, & \mbox{für } x<0 \end{cases}[/mm]
also ist doch die Dichtefunktion fon Z:
[mm]f^Z(t)=\begin{cases} 1-e^{- \lambda(\lambda e^{-\lambda t}, & \mbox{für } t \ge 0\\ 0, & \mbox{für } x<0 \end{cases}[/mm]
So und jetzt gilt ja für die Verteilungsfunktion: [mm]F^Z(t)=\integral_{-\infty}^{t}{f^Z(s) ds}[/mm].
Für [mm]x<0[/mm] ist das 0 aber für > bekomm ich das nicht hin, weil [mm]e^e^t[/mm] bekomm ich echt nicht hin.
bei b) bekomme ich den EY auch mit [mm]\bruch{1}{\lambda}[/mm] raus. EZ bekomme ich wegen dem selben Problem wie oben nicht hin. Kann mir jemand dabei helfen? wäre echt super nett.
Vielen Dank im voraus
LG
Elbi
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 16:46 Di 11.12.2007 | Autor: | luis52 |
Moin Christa,
> also ich bin mir nicht sicher ob ich die Aufgabe richtig
> verstehe. Y ist exponentialverteilt, das heißt ja:
> [mm]f^Y(t)=\begin{cases} \lambda e^{-\lambda t}, & \mbox{für } t \ge 0\\ 0, & \mbox{für } x<0 \end{cases}[/mm]
>
> also ist doch die Dichtefunktion fon Z:
> [mm]f^Z(t)=\begin{cases} 1-e^{- \lambda(\lambda e^{-\lambda t}, & \mbox{für } t \ge 0\\ 0, & \mbox{für } x<0 \end{cases}[/mm]
Hilfe, lass das bloss niemand sehen!
die Verteilungsfunktion von $Z$ ist ja gegeben durch [mm] $F_Z(z)=P(Z\le z)=P(1-\exp[-\lambda Y]\le [/mm] z)$.
Ist [mm] $z\le [/mm] 0$, so ist offenbar [mm] $F_Z(z)=0$ [/mm] und ist [mm] $z\ge [/mm] 1$, so ist [mm] $F_Z(z)=1$. [/mm]
Sei also $0<z<1$. Wenn du beachtest, dass die Verteiilungsfunktion von Y gegeben ist durch
[mm] $F_Y(y)=1-\exp[-\lambda [/mm] y]$, so ergibt sich
[mm] \begin{matrix}
F_Z(z)
&=&P(1-\exp[-\lambda Y]\le z) \\
&=&P(Y\le -\ln(1-z)/\lambda) \\
&=&1-\exp[\ln(1-z)] \\
&=&z
\end{matrix}
[/mm]
Aha, Z besitzt eine stetige Gleichverteilung im Intervall (0,1).
> bei b) bekomme ich den EY auch mit [mm]\bruch{1}{\lambda}[/mm]
> raus. EZ bekomme ich wegen dem selben Problem wie oben
> nicht hin.
Ich denke, beim Rest kommst du nun alleine klar.
> Kann mir jemand dabei helfen? wäre echt super nett.
Wir sind hier alle so.
vg Luis
|
|
|
|