matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitstheorieVerteilungsfunktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Wahrscheinlichkeitstheorie" - Verteilungsfunktion
Verteilungsfunktion < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Verteilungsfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:48 Do 17.12.2009
Autor: seamus321

Aufgabe
Sei a>0 und X~ [mm] Exp(\lambda) [/mm]

i) Bestimmen Sie die Verteilungsfunktion von Y:= min {X,a}
ii) Bestimmen Sie EY über die Tranformationsformel für den Erwartungswert.

Hi Leute,

ich sitze jetzt schon seit ner weile an der Aufgabe aber komme einfach nicht auf die Verteilungsfunktion.

erstmal meine Überlegungen dazu: (irgendwie bekomm ich das mit den Formeleditor grad nicht hin also schrei ich die Fälle mal einzeiln)

       0          [mm] y\ge \lambda [/mm]
[mm] F_{Y}(y)= -e^{-\lambda x} [/mm]      . [mm] 0\le [/mm] y [mm] \le [/mm] a (also wenn X=min {X,a})
       ????       [mm] a\le [/mm] y

Mein Problem liegt jetzt auf den dritten Fall zu kommen weil ich ja auch bedenken muss das [mm] F_{Y}(y)=\integral_{- \infty}^{\infty}{f(x) dx} [/mm] =1 sein muss. (mit f als Dichte von Y)

nun ja^^

ii) da hab ich bis jetzt nur die Formel für den Erwartungswert heraus gesucht da ich ja dafür meine Verteilungsfunktion aus i) brauche...

[mm] E(Y)=\integral_{\IR}^{}{y f(y) dy} [/mm]

es wäre super wenn mir jemand auf die Sprünge helfen könnte!

viele Grüße, Seamus

        
Bezug
Verteilungsfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 09:06 Sa 19.12.2009
Autor: luis52

Moin

schau mal hier:

1: @BOOK{Mood74,
2:   title = {Introduction to the Theory of Statistics},
3:   publisher = {Mc-Graw-Hill},
4:   year = {1974},
5:   author = {A. M. Mood and F. A. Graybill and D. C. Boes},
6:   edition = {3.}
7: }          


Seite 63, 69 (Fussnote)

vg Luis

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]