matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikVerteilungskonvergenz
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Stochastik" - Verteilungskonvergenz
Verteilungskonvergenz < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Verteilungskonvergenz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:38 Mi 20.11.2013
Autor: vivi

Hallo an alle,

die Frage klingt jetzt vermutlich trivial, aber ich würde gerne wissen, wie man aus
[mm] \sqrt{n}(T_n-\vartheta)\stackrel{D}{\to} \mathcal{N}(0,\Sigma) [/mm]
schlussfolgern kann, dass [mm] T_n \stackrel{P}{\to}\vartheta [/mm] gilt. Hierbei ist [mm] \Sigma [/mm] eine d [mm] \times [/mm] d Kovarianzmatrix, [mm] T_n [/mm] bzw. [mm] \vartheta [/mm] ein $d$-dimensionaler Zufallsvektor bzw. Vektor.
Kann man da mit Straffheit argumentieren und sagen, dass man eine kompakte Menge haben muss, in der alle [mm] X_n:=\sqrt{n}(T_n-\vartheta) [/mm] liegen müssen und wenn aber [mm] (T_n-\vartheta) [/mm] nicht gegen 0 fast sicher konvergiert das ganze dann unmöglich wäre, weil [mm] \sqrt{n} [/mm] nach unendlich abhaut?

Ich stehe zurzeit irgendwie auf dem Schlauch und wär dankbar für jede mögliche Anregung! :)

        
Bezug
Verteilungskonvergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 22:56 Mi 20.11.2013
Autor: Gonozal_IX

Hiho,

ist dir klar, dass aus  [mm]\sqrt{n}(T_n-\vartheta)\stackrel{D}{\to} \mathcal{N}(0,\Sigma)[/mm]

sofort folgt, dass  [mm](T_n-\vartheta)\stackrel{D}{\to}0[/mm] ? ("schlampig" gesagt: Teile beide Seiten durch [mm] \sqrt{n}) [/mm]

Daraus folgt sofort [mm] T_n \stackrel{P}{\to} \vartheta [/mm]

> [mm](T_n-\vartheta)[/mm] nicht gegen 0 fast sicher konvergiert

Hier geht es nicht um fast sichere Konvergenz, sondern um stochastische Konvergenz!

Gruß,
Gono.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]