matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisVollständige Induktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Analysis" - Vollständige Induktion
Vollständige Induktion < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vollständige Induktion: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 13:46 Mi 16.11.2005
Autor: Doreen

Hallo.
ich hätte da noch so eine rätselhafte Aufgabe.

[mm] \summe_{k=1}^{n} [/mm]
[mm] (-1)^{k+1} [/mm] * [mm] k^{2} [/mm] = [mm] (-1)^{n+1} [/mm] * [mm] \bruch{n(n+1)}{2} [/mm] das gehört nach dem Summezeichen noch

Zu dieser Induktion habe ich bereits den Induktionsanfang,
den Induktionsschluss... ich hänge hier bei der Zusammenfassung,
des Term (wie folgt) ... auch hier habe ich sämtliche Möglichkeiten schon
ausprobiert, komme aber ebenfalls nicht auf eine richtige Lösung.

[mm] (-1)^{n+1} [/mm] * [mm] \bruch{n(n+1)}{2} [/mm] + [mm] (-1)^{n+2} [/mm] * [mm] (n+1)^{2} [/mm]

Also ich bin der Meinung nach mind. 6 Stunden knobeln, sollte man
fragen vielleicht habe ich ja bloß einen Denkfehler irgendwo,
oder stimmt mein Induktionsschluss vielleicht nicht?

Wäre toll, wenn mir jemand einen Tipp gibt... dann wirds hoffentlich
allein weiter gehen.

Vielen Dank für hilfreiche Tipps.
Doreen


        
Bezug
Vollständige Induktion: Antwort
Status: (Antwort) fertig Status 
Datum: 15:25 Mi 16.11.2005
Autor: MatthiasKr

Hallo doreen,

das sieht doch schon ganz gut aus! du steckst also bei

[mm](-1)^{n+1}[/mm] * [mm]\bruch{n(n+1)}{2}[/mm] + [mm](-1)^{n+2}[/mm] * [mm](n+1)^{2}[/mm]

Wie kann es jetzt weitergehen? Eigentlich nur mit ausklammern: nämlich
[mm] $(-1)^{n+1}(n+1)$. [/mm] Hast du das mal versucht? dann solltest du eigentlich sehr schnell zu dem gewünschten ausdruck kommen.

Viele Grüße
Matthias


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]