matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenInduktionsbeweiseVollständige Induktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Induktionsbeweise" - Vollständige Induktion
Vollständige Induktion < Induktion < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Induktionsbeweise"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vollständige Induktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:11 Sa 13.10.2007
Autor: LisaRuby

Aufgabe
Beweise folgenden Satz mit dem Beweisverfahren der vollständigen Induktion:
[mm] 1^4+2^4+3^4+...+k^4 [/mm] = 1/30k [mm] (k+1)(2k+1)(3k^2+3k-1) [/mm]

Beim Schluss von k auf k+1 habe ich Probleme.

Induktionsannahme:
[mm] 1^4+2^4+3^4+...+k^4=1/30k(k+1)(2k+1)(3k^2+3k-1) [/mm]
Induktionsbehauptung: (k+1 für k einsetzen
[mm] 1^4+2^4+3^4+...+(k+1)^4=1/30(k+1)((k+1)+1)(2(k+1)+1)(3(k+1)^2+3(k+1)-1) [/mm]

Schluss von k auf k+1
[mm] 1^4+2^4+3^4+...+k^4 [/mm] = 1/30 k [mm] (k+1)(2k+1)(3k^2+3k-1) /+(k+1)^4 [/mm]
                                       = 1/30 [mm] (2k^3+k^2+2k^2+k)(3k^2+3k-1) [/mm] + [mm] k^4 +2k^3+k^2+2k^3+4k^2+2k+k^2+2k+1 [/mm]
              = 1/30 [mm] (6k^5+16k^4+14k^3+6k^2+3k+1) [/mm]

Hier komme ich nun leider nicht weiter...

=1/30 [mm] (12k^5+84k^4+226k^3+290k^2+156k+60) [/mm]
= 1/30 [mm] (12k^5+24k^4+10k^3+24k^4+48k^3+20k^2+36k^4+72k^3+30k^2+72k^3+144k^2+60k+24k^3+48k^2+20+48k^2+96k+40 [/mm]
= 1/30 [mm] (2k^3+4k^2+6k^2+12k+4k+8)(6k^2+12k+5) [/mm]
= 1/30 [mm] (k^2+3k+2)(2k+4)(3k^2+6k+3+3k^2+6k+2) =1/30(k+1)(k+2)(2k+4)(3(k^2+2k+1)+3(k^2+2k+1)-1) [/mm]
[mm] 1^4+2^4+...+(k+1)^4=1/30(k+1)((k+1)+1)(2(k+1)+1)(3(k+1)^2+3(k+1)-1 [/mm]

Meine Frage:
Stimmt das soweit oder bin ich auf dem falschen Weg?

Liebe Grüße,
Lisa                                      



Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Vollständige Induktion: Antwort
Status: (Antwort) fertig Status 
Datum: 17:19 Sa 13.10.2007
Autor: leduart

Hallo
ich würd aus dem Schritt erstmal (k+1) bei dem behaupteten und dem aus Ind Vors. berechneten ausklammern.
Dann einfach beide Ausdrücke ausrechnen, und zeigen, dass sie gleich sind.
meist gibt es auch noch nen Weg, geschickt auszuklammern, aber da man den oft nicht sieht, nur das offensichtliche ausklammern und dann stur nach Potenzen geordnet ausrechnen.
Gruss leduart

Bezug
        
Bezug
Vollständige Induktion: Noch nen Tipp.
Status: (Antwort) fertig Status 
Datum: 17:41 Sa 13.10.2007
Autor: M.Rex

Hallo

Nur so ein Tipp: Manchmal hilt es, das Ziel zu kennen, deswegen macht es meistens sinn, den Endterm, auf den du für k+1 kommen willst, ausumultiplizieren.
ALso hier:

[mm] \buch{1}{30}(k+1)((k+1)+1)(2(k+1)+1)(3(k+1)²+3(k+1)-1) [/mm]
[mm] =\bruch{1}{30}(k+1)(k+2)(2k+3)(3k²+6k+1+3k-2) [/mm]
[mm] =\bruch{1}{30}(k²+3k+2)(2k+3)(3k²+9k-1) [/mm]
[mm] =\bruch{1}{30}(2k³+9k²+13k+6)(3k²+9k-1) [/mm]
[mm] =\bruch{1}{30}(6k^{5}+18k^{4}-2k³+27k^{4}+81k³-9k²+16k³+117k²-13k+18k²+54k-6) [/mm]
[mm] =\bruch{1}{30}(6k^{5}+45k^{4}+95k³+126k²-13k+41k-6) [/mm]

Und wenn du jetzt

[mm] \underbrace{1^{4}+2^{4}+...+k^{4}}_{=\bruch{1}{30}k(k+1)(2k+1)(3k^2+3k-1),I.V}+(k+1)^{4} [/mm]
[mm] =\bruch{1}{30}k(k+1)(2k+1)(3k^2+3k-1)+(k+1)^{4} [/mm]

Ausmultiplizierst, solltest du auf das obere ausmultiplizierte kommen.

Marius


Bezug
                
Bezug
Vollständige Induktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:00 So 14.10.2007
Autor: LisaRuby

Aufgabe
$ [mm] \buch{1}{30}(k+1)((k+1)+1)(2(k+1)+1)(3(k+1)²+3(k+1)-1) [/mm] $
$ [mm] =\bruch{1}{30}(k+1)(k+2)(2k+3)(3k²+6k+1+3k-2) [/mm] $

Ich habe eine Frage zu diesem Schritt
$ [mm] \buch{1}{30}(k+1)((k+1)+1)(2(k+1)+1)(3(k+1)²+3(k+1)-1) [/mm] $
$ [mm] =\bruch{1}{30}(k+1)(k+2)(2k+3)(3k²+6k+1+3k-2) [/mm] $

Ich hätte 3(k+1)-1
anders ausgerechnet, nämlich 3k+3-1 also 3k+2
Kann mir jemand vielleicht helfen?
Danke!

Bezug
                        
Bezug
Vollständige Induktion: Antwort
Status: (Antwort) fertig Status 
Datum: 22:06 So 14.10.2007
Autor: leduart

Hallo
Du hast recht, Rex hat sich verrechnet oder verschrieben.
es muss 3k+2 heissen.
Gruss leduart

Bezug
                        
Bezug
Vollständige Induktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:17 So 14.10.2007
Autor: Martinius

Hallo,

da ist noch ein Fehler beim Ausmultiplizieren passiert.

[mm] \bruch{1}{30}[(k+1)(k+2)(2k+3)(3(k+1)^{2}+3(k+1)-1)] [/mm]

= [mm] \bruch{1}{30}[(k+1)(k+2)(2k+3)(3k^{2}+9k+5)] [/mm]


LG, Martinius



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Induktionsbeweise"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]