Vollständige Induktion < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 23:31 Do 27.01.2005 | Autor: | pansen |
Hallo,
ich quäl mich grad mit vollständiger Induktion und komme mit folgender Aufgabenstellung nicht wirklich weiter. Wäre nett, wenn mir jemand auf die Sprünge helfen könnte.
1! + 2*2! + ... + n*n! = (n+1)! -1
Induktionsbasis von p(1) = 1*1!=(1+1)!-1
Induktionsschritt: p(n): [mm] \summe_{i=1}^{n} [/mm] k*k! = (k+1)!-1
Ja das wärs dann auch schon ... :/ Also normalerweise (?) muss man das ja soweit umformen, das man einen Teil wieder in die Gleichung einsetzt, aber soweit komm ich überhaupt nicht.
Danke für eure hilfe ...
mfg
|
|
|
|
Die Behauptung ist: [mm]\summe_{k=1}^{n}{k \cdot k!} = (n+1)! -1[/mm].
Dein Induktionsanfang ist richtig.
Als zweiten Schritt brauchst du die Ind.voraussetzung (das ist das, was man dann nachher einsetzt). Du behauptest hier, dass die Gleichung von oben für ein [mm]n \in \IN[/mm] gelten soll.
Induktionsschluß (Schritt von n auf n+1): [mm]\summe_{k=1}^{n+1}{k \cdot k!}\ =\ (n+1) \cdot (n+1)! + \summe_{k=1}^{n}{k \cdot k!}\ =\ (n+1) \cdot (n+1)! + (n+1)! -1\ =\ (n+1)! \cdot [(n+1)+1] -1\ =\ (n+1)! \cdot [n+2] -1\ =\ (n+2)!-1[/mm].
Fertig. Hierbei habe ich an einer Stelle die Induktionsvoraussetzung eingesetzt (in dem Schritt, wo die Summe verschwindet, und durch den Wert ersetzt wird, der behauptet wird). Und im letzten Schritt habe ich die Identität [mm](n+2)!=(n+2) \cdot (n+1)![/mm] rückwärts angewendet.
Häufiges Problem bei der Vollst. Induktion: man weiß nicht so recht, wann man den fertig ist. Das Problem ist leicht zu beheben: zu zeigen ist nämlich, dass wenn man in die linke Seite der Behauptung statt [mm]n[/mm] das [mm]n+1[/mm] einsetzt, dass dann (nach einigen Umformungen, sowie dem Einsetzen der Ind.voraussetzung) die rechte Seite der Behauptung in der "(n+1)-Version" rauskommt. Deswegen ist es ganz nützlich, wenn man gleich am Anfang in die rechte Seite der Behauptung statt dem [mm]n[/mm] das [mm]n+1[/mm] einsetzt, und versucht, auf dieses Ergebnis hinzuarbeiten.
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 00:42 Fr 28.01.2005 | Autor: | pansen |
Erst mal danke für deine ausführliche Antwort, das hat mir auf jeden Fall schon mal weitergeholfen. Werd mich da wohl noch nen bisschen reinfuchsen müssen, bis ich das vernünftig und ohne Hilfe auf die Reihe bekomme :)
Angenehme Nachtruhe !
|
|
|
|