matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-InduktionVollständige Induktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Analysis-Induktion" - Vollständige Induktion
Vollständige Induktion < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vollständige Induktion: Mathematisch richtig ?
Status: (Frage) beantwortet Status 
Datum: 11:36 Mo 12.10.2009
Autor: Kerberos2008

Aufgabe
(Vollständige Induktion) man zeige:

a) Für jedes [mm] n\ge1 [/mm] gilt [mm] \summe_{k=1}^{n} k^{2}=\bruch{1}{6}*n*(n+1)*(2n+1) [/mm]

Induktionsanfang:

[mm] \summe_{k=1}^{n} k^{2}=\bruch{1}{6}*n*(n+1)*(2n+1) [/mm]

n = 1, k = 1

[mm] \summe_{k=1}^{n} 1^{2}=\bruch{1}{6}*1*(1+1)*(2*1+1) [/mm]
[mm] \summe_{k=1}^{n} 1=\bruch{1}{6}*1*(2)*(3) [/mm]
[mm] \summe_{k=1}^{n} 1=\bruch{1}{6}*1*6 [/mm]
[mm] \summe_{k=1}^{n} 1=\bruch{6}{6} [/mm]
[mm] \summe_{k=1}^{n} [/mm] 1=1

Somit ist bewiesen, dass die linke Seite gleich der rechten Seite ist!

Induktionsschritt: (n+1)

Ausgangsform:
[mm] \summe_{k=1}^{n} k^{2}=\bruch{1}{6}*n*(n+1)*(2n+1) [/mm]

Für die linke Seite:
[mm] \summe_{k=1}^{n} k^{2} [/mm] wird zu [mm] (n+1)^{2}+\bruch{1}{6}*n*(n+1)*(2n+1) [/mm]

Für die rechte Seite:
[mm] \bruch{1}{6}*(n+1)*((n+1)+1)*(2(n+1)+1) [/mm]
bzw.
[mm] \bruch{1}{6}*(n+1)*(n+2)*(2n+3) [/mm]


[mm] (n+1)^{2}+\bruch{1}{6}*n*(n+1)*(2n+1) [/mm] = [mm] \bruch{1}{6}*(n+1)*(n+2)*(2n+3) [/mm]

[mm] (n^{2}+2n+1)+\bruch{1}{6}*(n^{2}+n)*(2n+1) [/mm] = [mm] \bruch{1}{6}*(n^{2}+3n+2)*(2n+3) [/mm]

[mm] (n^{2}+2n+1)+\bruch{1}{6}*(n^{2}+n)*(2n+1) [/mm] = [mm] \bruch{1}{6}*(2n^{3}+6n^{2}+4n+3n^{2}+6n+3n+6) [/mm]

[mm] (n^{2}+2n+1)+\bruch{1}{6}*(2n^{3}+3n^{2}+n) [/mm] = [mm] \bruch{1}{6}*(2n^{3}+9n^{2}+13n+6) [/mm]

[mm] (n^{2}+2n+1)+\bruch{1}{6}*(2n^{3}+3n^{2}+n) [/mm] = [mm] \bruch{1}{6}*(2n^{3}+9n^{2}+13n+6) [/mm]    |*6

[mm] 6n^{2}+12n+6+2n^{3}+3n^{2}+n =2n^{3}+9n^{2}+13n+6 [/mm]

[mm] 2n^{3}+9n^{2}+13n+6=2n^{3}+9n^{2}+13n+6 [/mm]

[mm] \Box [/mm]


Nun, nachdem ich es abgetippt habe, habe ich meinen Rechenfehler schon gefunden(*freu*) und es ging beim 5. Versuch auf ;)

Dann hätte ich noch eine Frage zu der Schreibweise: Und zwar wollte ich wissen ob die Notation so mathematisch richtig ist, wie ich es hier abgetippt habe oder ob man hierbei noch [mm] \gdw [/mm] Symbole oder das Summenzeichen mit durchschleifen muß ?



        
Bezug
Vollständige Induktion: Korrektur
Status: (Antwort) fertig Status 
Datum: 11:49 Mo 12.10.2009
Autor: Roadrunner

Hallo Kerberos!


> n = 1, k = 1

Es gilt lediglich $n \ = \ 1$ .
$k_$ ist die Summationsvariable, welche sich daraus ergibt.

  

> [mm]\summe_{k=1}^{n} 1^{2}=\bruch{1}{6}*1*(1+1)*(2*1+1)[/mm]

Besser schreiben:
[mm] $$\summe_{k=1}^{\red{1}} \red{k}^2 [/mm] \ = \ [mm] 1^2 [/mm] \ = \ ...$$

  

> [mm]\summe_{k=1}^{n} 1=\bruch{1}{6}*1*(2)*(3)[/mm]

Ab hier ist das Summenzeichen zu viel!


> [mm]\summe_{k=1}^{n} 1=\bruch{1}{6}*1*6[/mm]
>  
> [mm]\summe_{k=1}^{n} 1=\bruch{6}{6}[/mm]
> [mm]\summe_{k=1}^{n}[/mm] 1=1
>  
> Somit ist bewiesen, dass die linke Seite gleich der rechten
> Seite ist!

[ok] Siehe Anmerkung oben!

  

> Induktionsschritt: (n+1)
>  
> Ausgangsform:
> [mm]\summe_{k=1}^{n} k^{2}=\bruch{1}{6}*n*(n+1)*(2n+1)[/mm]
>  
> Für die linke Seite:
> [mm]\summe_{k=1}^{n} k^{2}[/mm] wird zu
> [mm](n+1)^{2}+\bruch{1}{6}*n*(n+1)*(2n+1)[/mm]

Das muss heißen:
[mm] $$\summe_{k=1}^{\red{n+1}}k^2 [/mm] \ = \ ...$$


> Für die rechte Seite:
> [mm]\bruch{1}{6}*(n+1)*((n+1)+1)*(2(n+1)+1)[/mm]
> bzw.
> [mm]\bruch{1}{6}*(n+1)*(n+2)*(2n+3)[/mm]

[ok]

  

> [mm](n+1)^{2}+\bruch{1}{6}*n*(n+1)*(2n+1)[/mm] = [mm]\bruch{1}{6}*(n+1)*(n+2)*(2n+3)[/mm]
>  
> [mm](n^{2}+2n+1)+\bruch{1}{6}*(n^{2}+n)*(2n+1)[/mm] =  [mm]\bruch{1}{6}*(n^{2}+3n+2)*(2n+3)[/mm]
>  
> [mm](n^{2}+2n+1)+\bruch{1}{6}*(n^{2}+n)*(2n+1)[/mm] =  [mm]\bruch{1}{6}*(2n^{3}+6n^{2}+4n+3n^{2}+6n+3n+6)[/mm]
>  
> [mm](n^{2}+2n+1)+\bruch{1}{6}*(2n^{3}+3n^{2}+n)[/mm] =  [mm]\bruch{1}{6}*(2n^{3}+9n^{2}+13n+6)[/mm]
>  
> [mm](n^{2}+2n+1)+\bruch{1}{6}*(2n^{3}+3n^{2}+n)[/mm] = [mm]\bruch{1}{6}*(2n^{3}+9n^{2}+13n+6)[/mm]    |*6
>  
> [mm]6n^{2}+12n+6+2n^{3}+3n^{2}+n =2n^{3}+9n^{2}+13n+6[/mm]
>  
> [mm]2n^{3}+9n^{2}+13n+6=2n^{3}+9n^{2}+13n+6[/mm]
>  
> [mm]\Box[/mm]

[ok] Kann man so machen, ist aber m.E. viel zu umständlich.

Nimm
[mm] $$(n+1)^{2}+\bruch{1}{6}*n*(n+1)*(2n+1)$$ [/mm]
und klammere [mm] $\bruch{1}{6}*(n+1)$ [/mm] aus, und Du bist fast am Ziel.


> Dann hätte ich noch eine Frage zu der Schreibweise: Und
> zwar wollte ich wissen ob die Notation so mathematisch
> richtig ist, wie ich es hier abgetippt habe oder ob man
> hierbei noch [mm]\gdw[/mm] Symbole oder das Summenzeichen mit
> durchschleifen muß ?

Nein, das Summenzeichen entfällt durch Anwendung der Induktionsvoraussetzung.

Und wenn man dies als eine Gleichheitskette ansieht, sind auch keine [mm] $\gdw$ [/mm] -Syymbole vonnöten.


Gruß vom
Roadrunner


Bezug
                
Bezug
Vollständige Induktion: Danke :)
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:59 Mo 12.10.2009
Autor: Kerberos2008

Vielen Dank für die schnelle Antwort! :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]