matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-InduktionVollständige Induktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Analysis-Induktion" - Vollständige Induktion
Vollständige Induktion < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vollständige Induktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:43 Sa 13.03.2010
Autor: el_grecco

Aufgabe
Zeigen Sie mit vollständiger Induktion: [mm] n!\ge2^{n-1} (n\in\IN) [/mm]

Hallo.
Ich kann die beiden Erklärungen "denn: (...)" nicht ganz nachvollziehen.
Beim ersten "denn":
Wird rechts vom [mm] \ge [/mm] mit (n+1) multipliziert, weil auch links vom größer-gleich-Zeichen mit (n+1) multipliziert wurde?

Beim zweiten "denn":
Diese Erklärung leuchtet mir wirklich nicht ein, ebenso leuchtet mir das [mm] 2*2^{n-1} [/mm] vor der Klammer nicht ein.

Induktionsanfang: n=1 Es ist [mm] 1!=1\ge1=2^{0}=2^{1-1} [/mm]

Induktionsschritt n [mm] \mapsto [/mm] n + 1

Induktionsvoraussetzung: Es gelte für ein [mm] n\in\IN, [/mm] dass [mm] n!\ge2^{n-1} [/mm] wahr ist.

Dann ist

(n+1)! = (n+1)*n!
[mm] \ge(n+1)\*2^{n-1} [/mm] (denn: [mm] n!\ge2^{n-1} \Rightarrow (n+1)*n!\ge(n+1)*2^{n-1}) [/mm]
[mm] \ge2*2^{n-1} [/mm] (denn: [mm] n\ge1 \Rightarrow n+1\ge2) [/mm]
[mm] =2^{n} [/mm] = [mm] 2^{(n+1)-1} [/mm]

Vielen Dank.

        
Bezug
Vollständige Induktion: Abschätzungen
Status: (Antwort) fertig Status 
Datum: 18:02 Sa 13.03.2010
Autor: Loddar

Hallo el_grecco!


>  Beim ersten "denn":
> Wird rechts vom [mm]\ge[/mm] mit (n+1) multipliziert, weil auch
> links vom größer-gleich-Zeichen mit (n+1) multipliziert wurde?

Hier wurde nichts mit $(n+1)_$ multipliziert.

Erst wurde die Definition bzw. eine Eigenschaft der Fakultät anwandt mit:
$$(n+1)! \ = \ n!*(n+1) \ = \ (n+1)*n!$$

Anschließend wurde auf den Term $n!_$ die Induktionsvorausetzung $n! \ [mm] \ge [/mm] \ [mm] 2^{n-1}$ [/mm] angewandt.



> Beim zweiten "denn":
> Diese Erklärung leuchtet mir wirklich nicht ein,

Hm, wenn gilt $n \ [mm] \ge [/mm] \ 1$ , da $n \ [mm] \in [/mm] \ [mm] \IN$ [/mm] , folgt draus natürlich auch unmittelbar:
$$n+1 \ [mm] \ge [/mm] \ 1+1 \ = \ 2$$

> ebenso leuchtet mir das [mm]2*2^{n-1}[/mm] vor der Klammer nicht ein.

Es wurde wieder abgeschätzt mit dem o.g.: $(n+1) \ [mm] \ge [/mm] \ 2$ .


Gruß
Loddar


Bezug
                
Bezug
Vollständige Induktion: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 18:23 Sa 13.03.2010
Autor: el_grecco

Danke soweit, Loddar.

Mein einziges Problem ist nun das erste "denn".
Vielleicht hilft es, wenn ich schreibe, wie ich die Erklärung verstehe.

Ich setze in die IV n+1 ein.
Auf der linken Seite erhalte ich entsprechend der Fakultätsregel (n+1)*n!.

Ich würde dann aber weiter so vorgehen, dass ich n+1 in [mm] 2^{n-1} [/mm] einsetze und das ergibt nicht das in der Lösung stehende [mm] (n+1)*2^{n-1} [/mm]

Irgendwie stehe ich hier total auf dem Schlauch...

Bezug
        
Bezug
Vollständige Induktion: Antwort
Status: (Antwort) fertig Status 
Datum: 07:13 So 14.03.2010
Autor: angela.h.b.


> Zeigen Sie mit vollständiger Induktion: [mm]n!\ge2^{n-1} (n\in\IN)[/mm]

>  
> Induktionsanfang: n=1 Es ist [mm]1!=1\ge1=2^{0}=2^{1-1}[/mm]
>  
> Induktionsschritt n [mm]\mapsto[/mm] n + 1
>  
> Induktionsvoraussetzung: Es gelte für ein [mm]n\in\IN,[/mm] dass
> [mm] \red{n!\ge 2^{n-1}} [/mm] wahr ist.

Hallo,

unter dieser Voraussetzung ist nun im Induktionsschluß zu zeigen, daß dann auch gilt

Induktionsschluß: [mm] (n+1)!\ge 2^n. [/mm]

Beweis:

Es ist

>  
> (n+1)! = [mm] (n+1)*\red{n!\qquad \ge}\quad (n+1)\*\red{2^{n-1}}(denn:[/mm]  [mm]n!\ge2^{n-1} \Rightarrow (n+1)*n!\ge(n+1)*2^{n-1})[/mm]

Hier wird die Induktionsvoraussetzung verwendet!

Gruß v. Angela

>  
> [mm]\ge2*2^{n-1}[/mm] (denn: [mm]n\ge1 \Rightarrow n+1\ge2)[/mm]
>  [mm]=2^{n}[/mm] =
> [mm]2^{(n+1)-1}[/mm]
>  
> Vielen Dank.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]