matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisVollständige Induktion über n
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Analysis" - Vollständige Induktion über n
Vollständige Induktion über n < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vollständige Induktion über n: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:02 Fr 02.12.2005
Autor: Nieke

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hi!
Ich soll zeigen, dass für alle n [mm] \in \IN [/mm] und x [mm] \in \IR [/mm] mit 1<x gilt: [mm] x^{1/n} \le [/mm] x.

Ich habe versucht, das mit vollständiger Induktion zu lösen. Das sieht bei mir so aus:

Sei n [mm] \in \IN [/mm] und x [mm] \in \IR [/mm] mit 1 < x.

Induktionsverankerung:
n=1.
[mm] x^{1/1} [/mm] =x [mm] \le [/mm] x

Induktionsannahme:
[mm] x^{1/n} \le [/mm] x

Induktionsbehauptung:
[mm] x^{1/n+1} \le [/mm] x

Induktionsschritt:
[mm] x^{1/n+1} \le x^{1/n} \le [/mm] x
weil n+1 [mm] \le [/mm] n ist bzw. [mm] \wurzel[n+1]{x} \le \wurzel[n]{x} [/mm]
Daraus folgt dann, dass [mm] x^{1/n+1} \le [/mm] x

Ich würde mich freuen, wenn mir jemand einen Tipp geben kann, ob das richtig ist. Mir kommt es zu einfach vor, ich kann mir nicht vorstellen, dass die Aufgabe damit schon gelöst ist.

Gruß Nieke


        
Bezug
Vollständige Induktion über n: Antwort
Status: (Antwort) fertig Status 
Datum: 10:57 Fr 02.12.2005
Autor: Mathe_Alex

Guten Morgen,

Ich würde nicht sagen, dass Du recht hast, denn Du machst bei deiner Induktion die linke Seite der Ungleichung größer, wenn Du die Induktionsvoraussetzung anwendest....meine Lösung kommt mir aber auch komisch vor, aber ich sende sie mal:

I.A. [mm] x^{\bruch{1}{n}} \le [/mm] x

n->n+1

[mm] x^{\bruch{1}{n+1}} \le [/mm] x

<=> [mm] \bruch{x}{x^{n/n+1}} [/mm]
<=> [mm] \bruch{xx^{1/n}}{x^{n+1/n}} [/mm]

Nach IA ist [mm] x^{\bruch{1}{n}} \le [/mm] x , also ersetze ich es im Zähler. Der Bruch wird kleiner auf der linken Seite, die Umformungist also erlaubt.

<=> [mm] x^{2} \le x^{\bruch{2n+1}{n}} [/mm]

Ein paar Worte zu meiner Idee: [mm] \bruch{1}{n+1} [/mm] gefällt mir nicht, also mach ich daraus [mm] \bruch{1+n-n}{n+1}=\bruch{n+1}{n+1}-\bruch{n}{n+1} [/mm] Diesen Trick wende ich zweimal an, um den Exponenten so umzuformen, dass ich die Induktionsvoraussetzung verwenden kann. Außerdem mache ich nach beim Induktionsschritt
[mm] x^{\bruch{1}{n+1}}= x:x^{n/n+1} [/mm] diese Umformung. Danach oben besagten Trick mit +n-n.....hoffe es stimmt. Ansonsten kannst Du ja mal meine Versuche als Anregungn nehmen.

Gruß
Alex

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]