matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMaßtheorieVolumen der Einheitskugel
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Maßtheorie" - Volumen der Einheitskugel
Volumen der Einheitskugel < Maßtheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Volumen der Einheitskugel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:32 Mi 19.11.2008
Autor: cisina

Hallo,
ich hätte eine Frage und zwar wie man das Volumen der 3-dimensionalen Einheitskugel mit Hilfe von 3fach Integralen berechnet.
Bei der 2-dimensionalen Einheitskugel haben wir das so gemacht:
[mm] \integral_{-1}^{1}{\integral_{0}^{ \wurzel{x^2-1}}{1 dy} dx} [/mm]
das fand ich auch noch logisch aber wie man es jetzt mit einer Dimension macht kann ich mir nicht vorstellen?


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Volumen der Einheitskugel: Antwort
Status: (Antwort) fertig Status 
Datum: 02:02 Do 20.11.2008
Autor: rainerS

Hallo!

> Hallo,
>  ich hätte eine Frage und zwar wie man das Volumen der
> 3-dimensionalen Einheitskugel mit Hilfe von 3fach
> Integralen berechnet.
>  Bei der 2-dimensionalen Einheitskugel haben wir das so
> gemacht:
>  [mm]\integral_{-1}^{1}{\integral_{0}^{ \wurzel{x^2-1}}{1 dy} dx}[/mm]

Nicht ganz: es ist:

[mm]\integral_{-1}^{1}{\integral_{-\wurzel{1-x^2}}^{ \wurzel{1-x^2}}{1 dy} dx}[/mm]


> das fand ich auch noch logisch aber wie man es jetzt mit
> einer Dimension macht kann ich mir nicht vorstellen?

Dieses Doppelintegral entsteht aus der Bedingung [mm] $0\le x^2+y^2\le [/mm] 1$ für die Punkte in der 2-dimensionalen Einheitskugel, indem du eine Koordinate (x) von -1 bis 1 laufen lässt, und für die andere

  [mm] y^2\le 1-x^2 \implies -\wurzel{1-x^2}\le y \le +\wurzel{1-x^2} [/mm]

bekommst.

In 3 Dimensionen ist die Ungleichung [mm] $0\le x^2+y^2+z^2\le [/mm] 1$. Auch hier fängst du mit einer Koordinate an, zum Beispiel x: [mm] $-1\le [/mm] x [mm] \le+1$. [/mm] Daraus ergibt sich:

  [mm] y^2+z^2 \le 1-x^2 [/mm]

Jetzt kannst du entweder das Ergebnis für die 2-dimensionale Kugel verwenden, denn dies ist die Ungleichung für einen Kreis vom Radius [mm] $\sqrt{1-x^2}$, [/mm] dessen 2-dimensionales Volumen also [mm] $\pi(1-x^2)$ [/mm] ist. Insgesamt ergibt sich:

  [mm] \integral_{-1}^{1} \pi(1-x^2) dx = \bruch{4}{3}\pi [/mm].

Oder du kannst die Integral explizit hinschreiben, indem du die zweite Koordinate (y) wählst, mit

  [mm] y^2\le 1-x^2 \implies -\wurzel{1-x^2}\le y \le +\wurzel{1-x^2} [/mm]

Zuletzt bleict die z-Koordinate mit

  [mm] z^2 \le 1-x^2-y^2 \implies -\wurzel{1-x^2-y^2} \le z \le +\wurzel{1-x^2-y^2} [/mm]

Insgesamt hast du das Dreifachintegral

[mm] \integral_{-1}^{1}{\integral_{-\wurzel{1-x^2}}^{ \wurzel{1-x^2}}{\integral_{-\wurzel{1-x^2-y^2}}^{+\wurzel{1-x^2-y^2}}{{1 dz}dy} dx}[/mm]

Viele Grüße
   Rainer





Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]