matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungVolumen durch Integration
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Integralrechnung" - Volumen durch Integration
Volumen durch Integration < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Volumen durch Integration: Rotation um y-Achse
Status: (Frage) beantwortet Status 
Datum: 11:40 Mi 14.02.2007
Autor: matter

Aufgabe
f(x)=y=(-2e^-1)x + 8e^-1 und die Koordinatenachsen begrenzen eine Dreiecksfläche. Bei der der Rotation um die y-Achse entsteht ein Kreiskegel.
Berechnen Sie die Maßzahl des Volumen.  

Ich habe diese Frage in keinem anderen Forum gestellt.

So ich hab als erstes mal das Volumen mit Hilfe der Gleichung

V=1/3 [mm] \pi [/mm] r² h   berechnet.  r ist 4 (NST bei x=4) und h ist 8e^-1
Dabei komme ich auf ein Volumen von rund 49,31 VE


So jetzt hab ich mich an die Berechnung mit Hilfe von Integration gemacht.

Zunächst muss ja die Umkehrfunktion gebildet werden.

Da bekomme ich g(x)=y= (-1/(2e^-1)) x  + 4

Nun gilt ja:

V= [mm] \pi \integral_{0}^{4}{g(x)² dx} [/mm]

Nach dem quadrieren erhalte ich  (1/(4e^-2)) x² + 4
Wenn ich das dann integriere komme ich auf (1/(12e^-2))x³ + 16x
Wenn ich nun die Grenzen einsetze und noch mit  [mm] \pi [/mm]  multipliziere kommt da was völlig anderes raus :-/

Danke für Hilfe.

        
Bezug
Volumen durch Integration: Antwort
Status: (Antwort) fertig Status 
Datum: 11:58 Mi 14.02.2007
Autor: riwe


> f(x)=y=(-2e^-1)x + 8e^-1 und die Koordinatenachsen
> begrenzen eine Dreiecksfläche. Bei der der Rotation um die
> y-Achse entsteht ein Kreiskegel.
>  Berechnen Sie die Maßzahl des Volumen.  
> Ich habe diese Frage in keinem anderen Forum gestellt.
>  
> So ich hab als erstes mal das Volumen mit Hilfe der
> Gleichung
>  
> V=1/3 [mm]\pi[/mm] r² h   berechnet.  r ist 4 (NST bei x=4) und h
> ist 8e^-1
>  Dabei komme ich auf ein Volumen von rund 49,31 VE
>  
>
> So jetzt hab ich mich an die Berechnung mit Hilfe von
> Integration gemacht.
>  
> Zunächst muss ja die Umkehrfunktion gebildet werden.
>  
> Da bekomme ich g(x)=y= (-1/(2e^-1)) x  + 4
>  
> Nun gilt ja:
>  
> V= [mm]\pi \integral_{0}^{4}{g(x)² dx}[/mm]
>  
> Nach dem quadrieren erhalte ich  (1/(4e^-2)) x² + 4
>  Wenn ich das dann integriere komme ich auf (1/(12e^-2))x³
> + 16x
>  Wenn ich nun die Grenzen einsetze und noch mit  [mm]\pi[/mm]  
> multipliziere kommt da was völlig anderes raus :-/
>  
> Danke für Hilfe.

wie bildest du den die umkehrfunktion?
umstellen der geraden nach y ergibt bei mir, soferbne ich deine "schreiberei" richtig interpretiere:

[mm]x=-\frac{e}{2}(y-\frac{8}{e})[/mm]
und die 2. frage, wie quadrierst du?
[mm]x²=\frac{y²e²}{4}-4e\cdot y+16[/mm]

und überhaupt: wo ist die dreiecksfläche?

Bezug
                
Bezug
Volumen durch Integration: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:11 Mi 14.02.2007
Autor: matter

Ich bilde die Umkehrfunktion so, dass ich erst x und y vertausche und dann wieder nach y umstelle.

Dabei komme ich aber auf exakt das Selbe was du da auch hast. Und wenn ich dann eben x und y nicht vertausche und dann nicht so komisch ausklammere wie du kommt eben

x= (-ye/2) + 4 raus

Wie meinst du "wo ist die Dreiecksfläche" ? Dreieck mit 3 Punkten (0/0) (0/ 8e^-1) und (4/0)

Komme irgendwie trotzdem nicht weiter

Bezug
                        
Bezug
Volumen durch Integration: falsch quadriert
Status: (Antwort) fertig Status 
Datum: 12:31 Mi 14.02.2007
Autor: Roadrunner

Hallo matter!


Deine Umkehrfunktion habe ich auch erhalten. Allerdings machst Du beim Quadrieren einen Fehler: Du musst schon die MBbinomische Formeln beachten:

[mm] $[g(x)]^2 [/mm] \ = \ [mm] \left(4-\bruch{e}{2}*x\right)^2 [/mm] \ = \ [mm] 4^2-2*4*\bruch{e}{2}*x+\left(\bruch{e}{2}*x\right)^2 [/mm] \ = \ [mm] 16-4e*x+\bruch{4}{e^2}*x^2$ [/mm]


Kommst Du nun auf Dein gewünschtes Ergebnis?


Gruß vom
Roadrunner


Bezug
                                
Bezug
Volumen durch Integration: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:38 Mi 14.02.2007
Autor: matter

Ah ja. Da ist ja eine binomische Formel. Vielen Dank für den Hinweis. Moment ich rechne es eben durch.

Bezug
        
Bezug
Volumen durch Integration: Antwort
Status: (Antwort) fertig Status 
Datum: 12:41 Mi 14.02.2007
Autor: angela.h.b.


> f(x)=y=(-2e^-1)x + 8e^-1 und die Koordinatenachsen
> begrenzen eine Dreiecksfläche. Bei der der Rotation um die
> y-Achse entsteht ein Kreiskegel.
>  Berechnen Sie die Maßzahl des Volumen.  
> Ich habe diese Frage in keinem anderen Forum gestellt.
>  
> So ich hab als erstes mal das Volumen mit Hilfe der
> Gleichung
>  
> V=1/3 [mm]\pi[/mm] r² h   berechnet.  r ist 4 (NST bei x=4) und h
> ist 8e^-1
>  Dabei komme ich auf ein Volumen von rund 49,31 VE
>  
>
> So jetzt hab ich mich an die Berechnung mit Hilfe von
> Integration gemacht.
>  
> Zunächst muss ja die Umkehrfunktion gebildet werden.
>  
> Da bekomme ich g(x)=y= (-1/(2e^-1)) x  + 4
>  
> Nun gilt ja:
>  
> V= [mm]\pi \integral_{0}^{4}{g(x)² dx}[/mm]

Hallo,

ich würde - abgesehen davon, daß Du, wie bereits erwähnt, richtig quadrieren mußt - die Integrationsgrenzen infrage stellen wollen...
Genauer: die obere Grenze.

Gruß v. Angela

Bezug
                
Bezug
Volumen durch Integration: Korrekturmitteilung
Status: (Korrektur) richtig (detailiert geprüft) Status 
Datum: 12:55 Mi 14.02.2007
Autor: matter

Also erstmal auch dank an Angela. Als Grenzen müssen die y-Werte eingesetzt werden. Also 0 und 8e^-1 !

Wenn ich nun rechne komme ich auf das richtige Ergebnis:


V= [mm] \pi \integral_{0}^{8e^-{1}}{g(x)² dx} [/mm] = 128/3  [mm] \pi [/mm] e^-{1} [mm] \approx [/mm] 49,31 VE

Wobei g(x)² =  [mm] \bruch{1e²}{12} [/mm] x³  -  2ex²  + 16x

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]