matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationVolumenberechnung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Integration" - Volumenberechnung
Volumenberechnung < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Volumenberechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:19 Fr 28.11.2008
Autor: vicky

Aufgabe 1
Seien a,c [mm] \in \IR_{+} [/mm] \ {0}. Berechnen Sie das Volumen von

P:={(x,y,z) [mm] \in \IR^3 [/mm] | ax² + cy² [mm] \le [/mm] z [mm] \le [/mm] 1}.

Aufgabe 2
Seien a,b,c [mm] \in \IR, \pmat{ a & b \\ b & c } [/mm] eine positiv definite Matrix und

Q:= {(x,y,z) [mm] \in \IR^3 [/mm] | ax² + 2bxy + cy² [mm] \le [/mm] z [mm] \le [/mm] 1}.

Durch eine lineare Transformation der (x,y)-Ebene führt man die Berechnung von [mm] v_{3}(Q) [/mm] auf Aufgabe 1. zurück.

Hallo zusammen,

ich habe momentan leider keine Idee wie ich bei den Aufgaben beginnen soll. Ich kann mir bei Aufgabe 1. auch nicht vorstellen, wie dort der "Körper" aussehen soll, von dem das Volumen zu berechnen ist.

Ich weiß nur: x² + y² =1 ist die Koordinatengleichung des Einheitskreises, aber bringt mich das weiter?

Wir behandeln zur Zeit den Transformationssatz. Findet dieser in Aufgabe 1. Anwendung? Und wenn ja, in wie fern?

Vielen Dank schon mal für eure Hilfe.

Gruß vicky



        
Bezug
Volumenberechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 19:04 Fr 28.11.2008
Autor: MathePower

Hallo vicky,

> Seien a,c [mm]\in \IR_{+}[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

\ {0}. Berechnen Sie das Volumen von

>
> P:={(x,y,z) [mm]\in \IR^3[/mm] | ax² + cy² [mm]\le[/mm] z [mm]\le[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

1}.

>  Seien a,b,c [mm]\in \IR, \pmat{ a & b \\ b & c }[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

eine positiv

> definite Matrix und
>  
> Q:= {(x,y,z) [mm]\in \IR^3[/mm] | ax² + 2bxy + cy² [mm]\le[/mm] z [mm]\le[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

1}.

>  
> Durch eine lineare Transformation der (x,y)-Ebene führt man
> die Berechnung von [mm]v_{3}(Q)[/mm] auf Aufgabe 1. zurück.
>  Hallo zusammen,
>  
> ich habe momentan leider keine Idee wie ich bei den
> Aufgaben beginnen soll. Ich kann mir bei Aufgabe 1. auch
> nicht vorstellen, wie dort der "Körper" aussehen soll, von
> dem das Volumen zu berechnen ist.
>  
> Ich weiß nur: x² + y² =1 ist die Koordinatengleichung des
> Einheitskreises, aber bringt mich das weiter?


Nun, das ist doch schon mal nen Anfang.

Weiterhin wirst Du auch wissen, wenn  bei der Gleichung

[mm]a*x^{2}+c*y^{2}=r^{2}, \ a,c,r \in \IR^{+} \setminus \left\{0\right\}[/mm]

die Koeffizienten a,c gleich sind, daß es dann um einen Kreis handelt.

Sind die Koeffzienten a,c unterschiedlich, dann handelt es sich um eine Ellipse.

Daher handelt es sich hier um einen elliptischen Zylinder.


>  
> Wir behandeln zur Zeit den Transformationssatz. Findet
> dieser in Aufgabe 1. Anwendung? Und wenn ja, in wie fern?


Der Transformationssatz findet bei der Berechnung des Volumens Anwendung.


>  
> Vielen Dank schon mal für eure Hilfe.
>  
> Gruß vicky
>  
>  


Gruß
MathePower

Bezug
                
Bezug
Volumenberechnung: nicht Zylinder
Status: (Korrektur) kleiner Fehler Status 
Datum: 19:21 Fr 28.11.2008
Autor: Al-Chwarizmi

Hallo MathePower und vicky,


> >Berechnen Sie das Volumen von
> >
> > [mm] P:=\{(x,y,z) \in \IR^3 | ax² + cy² \le z \le1\} [/mm]



> > Ich kann mir bei Aufgabe 1 auch
> > nicht vorstellen, wie dort der "Körper" aussehen soll, von
> > dem das Volumen zu berechnen ist.
>  >  
> > Ich weiß nur: x² + y² =1 ist die Koordinatengleichung des
> > Einheitskreises, aber bringt mich das weiter?
>  
>
> Nun, das ist doch schon mal nen Anfang.
>  
> Weiterhin wirst Du auch wissen, wenn  bei der Gleichung
>  
> [mm]a*x^{2}+c*y^{2}=r^{2}, \ a,c,r \in \IR^{+} \setminus \left\{0\right\}[/mm]
>  
> die Koeffizienten a,c gleich sind, daß es dann um einen
> Kreis handelt.
>  
> Sind die Koeffzienten a,c unterschiedlich, dann handelt es
> sich um eine Ellipse.
>  
> Daher handelt es sich hier um einen elliptischen Zylinder.      [notok]

              ein elliptisches Paraboloid !
  

> > Wir behandeln zur Zeit den Transformationssatz. Findet
> > dieser in Aufgabe 1. Anwendung? Und wenn ja, in wie fern?

Ich kenne den Satz nicht genau, aber ich kann mir
vorstellen, um was es geht: durch eine affine Transformation
(Multiplikation der y-Koordinate mit einem geeigneten
Faktor) wird das elliptische Paraboloid in eines mit
kreisförmigen Querschnitten verwandelt. Dann wird
aus der Volumenberechnung ein gewöhnliches Rotations-
körper-Integral.


Gruß    Al

Bezug
                
Bezug
Volumenberechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:22 Sa 29.11.2008
Autor: vicky

Guten Morgen,

muß ich bei der 1. Aufgabe auch mit Polarkoordinaten arbeiten. Ich weiß leider immer noch nicht wie ich bei der Berechnung des Volumens vorgehen soll. Ich bin mir da ziemlich unsicher.

Ich vermute allerdings, das eine Umwandlung in Polarkoordinaten die Aufgabe vielleicht einfacher zum rechnen macht.

Desweiteren vermute ich, das bei dem elliptischen Paraboloiden Rotationssymetrie vorliegt und ich somit eine weitere Vereinfachung bei dieser Aufgabe erhalte.

Ansatz:

Vol(P) = [mm] \integral_{P}{dxdydz} [/mm] = [mm] \integral_{0}^{1}\integral_{-\pi}^{\pi}\integral_{-\bruch{\pi}{2}}^{\bruch{\pi}{2}}{r^{2} cos \phi d\phi d\psi dr} [/mm]

Wie geht es nun weiter?

Bezug
                        
Bezug
Volumenberechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 11:13 Sa 29.11.2008
Autor: Al-Chwarizmi

Guten Morgen vicky
  

> muß ich bei der 1. Aufgabe auch mit Polarkoordinaten
> arbeiten.

Es geht hier auch ohne.
  

> Ich vermute allerdings, das eine Umwandlung in
> Polarkoordinaten die Aufgabe vielleicht einfacher zum
> rechnen macht.

Eher nicht !
  

> Desweiteren vermute ich, das bei dem elliptischen
> Paraboloid Rotationssymetrie vorliegt und ich somit eine
> weitere Vereinfachung bei dieser Aufgabe erhalte.


Das elliptische Paraboloïd ist nicht rotations-
symmetrisch, falls [mm] a\not=c. [/mm] In diesem Fall können wir
es aber leicht so "quetschen", dass es rotations-
symmetrisch wird !

> Ansatz:
>
> Vol(P) = [mm]\integral_{P}{dxdydz}=\integral_{0}^{1}\integral_{-\pi}^{\pi}\integral_{-\bruch{\pi}{2}}^{\bruch{\pi}{2}}{r^{2} cos \phi d\phi d\psi dr}[/mm]

Für die gedachte Methode brauchen wir kein
Dreifachintegral. Ein einfaches wird genügen !

Wie "quetschen" wir nun das Paraboloid zurecht ?
Das Ziel wäre, aus den Ellipsengleichungen

        [mm] a*x^2+c*y^2=z [/mm]    

Kreisgleichungen zu machen, mit identischen
Faktoren bei beiden Quadraten, also z.B.

        [mm] a*x^2+a*\overline{y}^2=z [/mm]

Identifizieren wir diese beiden Terme, so zeigt
sich:

       [mm] c*y^2=a*\overline{y}^2 [/mm]

       [mm] y^2=\bruch{a}{c}*\overline{y}^2 [/mm]

Wenn wir also

       [mm] y=\wurzel{\bruch{a}{c}}*\overline{y} [/mm]

setzen, so wird im [mm] x-\overline{y}-z-Raum [/mm]
ein Rotationsparaboloid entstehen:

       [mm] $\overline{P}:\quad a*x^2+a*\overline{y}^2\le z\le [/mm] 1$

Sein Volumen [mm] Vol(\overline{P}) [/mm] unterscheidet sich von
$Vol(P)$ um den gleichen Faktor wie die
[mm] \overline{y}- [/mm] Koordinaten von den $\ y$ .
In der Transformationsformel entspricht
dieser Faktor einer Determinante.

Die Gleichung des Rotationsparaboloids, das den
gekrümmten Teil des Randes von [mm] \overline{P} [/mm] ausmacht,
kann in der Form [mm] z=a*r^2 [/mm] geschrieben werden,
wobei r der Radius auf dem Niveau z ist [mm] (0\le z\le [/mm] 1).
Die Berechnung von [mm] Vol(\overline{P}) [/mm] wird nun ein
einfaches Drehkörperintegral.


LG   al-Chwarizmi



Bezug
                                
Bezug
Volumenberechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:22 Sa 29.11.2008
Autor: vicky

Es tut mir leid aber ich kann das alles noch nicht so ganz nachvollziehen.

Ich habe jetzt also meinen elliptischen Paraboloiden so zurecht "gequetscht", das dieser nun rotationssymmetrisch ist, was er ja bei [mm] a\not=c [/mm] nicht wäre.

Den elliptischen Paraboloiden habe ich mir bei wikipedia angesehen. Im Punkt x=0,y=0 und z=0 ist der Ursprung und hat eine Höhe von [mm] z\le [/mm] 1.

Da nun z = a * r² sein soll, heißt es also das mein Radius von meinem "gequetschten" Paraboloiden r= [mm] \wurzel{\bruch{z}{a}} [/mm] ist??? Und wenn [mm] z=ax^{2} [/mm] + [mm] a\overline{y}^{2}, [/mm] gilt dann [mm] r=\wurzel{x²+\overline{y}²}? [/mm]

Bedeutet es eigentlich auch, das mein gequetschter Paraboloid um die z-Achse rotiert oder habe ich da was falsch verstanden?

Und nun die wichtigste Frage: Wie sieht das Integral aus? Es ist ja nun ein einfaches Integral. Gehen die Integrationsgrenzen von 0 bis 1?

Bezug
                                        
Bezug
Volumenberechnung: Integral
Status: (Antwort) fertig Status 
Datum: 13:41 Sa 29.11.2008
Autor: Al-Chwarizmi

Hi Vicky,


> Ich habe jetzt also meinen elliptischen Paraboloiden so
> zurecht "gequetscht", das dieser nun rotationssymmetrisch
> ist, was er ja bei [mm]a\not=c[/mm] nicht wäre.
>  
> .......
>
> Da nun z = a * r² sein soll, heißt es also das mein Radius
> von meinem "gequetschten" Paraboloiden [mm]r=\wurzel{\bruch{z}{a}}[/mm] ist???
> Und wenn [mm]\ z=ax^{2}+a\overline{y}^{2}[/mm], gilt dann [mm]\ r=\wurzel{x²+\overline{y}²}?[/mm]    [ok]

        Genau.
  

> Bedeutet es eigentlich auch, das mein gequetschter
> Paraboloid um die z-Achse rotiert        [ok]
> oder habe ich da was falsch verstanden?
>  
> Und nun die wichtigste Frage: Wie sieht das Integral aus?
> Es ist ja nun ein einfaches Integral. Gehen die
> Integrationsgrenzen von 0 bis 1?

Ja:      $\ [mm] Vol(\overline{P})=\integral_{z=0}^{1}\underbrace{\pi*r(z)^2}_{Q(z)}\ [/mm] dz$

$\ Q(z)$ ist die Querschnittsfläche des Rotationsparaboloïds
in der Höhe $\ z$ über der [mm] x-\overline{y}- [/mm] Ebene.

Wenn du  $\ [mm] Vol(\overline{P})$ [/mm] hast, musst du noch
zurückrechnen zu $\ Vol(P)$ und bist am Ziel.


Gruß     Al-Chw.

Bezug
                                                
Bezug
Volumenberechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:19 Sa 29.11.2008
Autor: vicky

Ich versuche dann jetzt mal das Volumen zu berechnen:

[mm] Vol(\overline{P}) [/mm] = [mm] \integral_{0}^{1} \pi r(z)^{2} [/mm] dz = [mm] \integral_{0}^{1} \pi \bruch{z}{a} [/mm] dz (mit [mm] r(z)=\wurzel{\bruch{z}{a}} [/mm] )
= [mm] \bruch{\pi}{a}\integral_{0}^{1} [/mm] z dz = [mm] \bruch{\pi}{2a} [/mm]

Stimmt das noch?

Wie erfolgt nun die Rückrechnung zu Vol(P)?

Bezug
                                                        
Bezug
Volumenberechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 14:33 Sa 29.11.2008
Autor: Al-Chwarizmi


> Ich versuche dann jetzt mal das Volumen zu berechnen:
>  
> [mm]Vol(\overline{P})[/mm] = [mm]\integral_{0}^{1} \pi r(z)^{2} dz =\integral_{0}^{1} \pi \bruch{z}{a}[/mm] dz

> (mit [mm]r(z)=\wurzel{\bruch{z}{a}}[/mm] )

>  = [mm]\bruch{\pi}{a}\integral_{0}^{1}[/mm] z dz = [mm]\bruch{\pi}{2a}[/mm]
>  
> Stimmt das noch?     [daumenhoch]

     Exakt.

> Wie erfolgt nun die Rückrechnung zu Vol(P)?

Wir hatten        $\ y\ =\ [mm] \wurzel{\bruch{a}{c}}*\overline{y}$ [/mm]

Analog ist    $\ Vol(P)\ =\ [mm] \wurzel{\bruch{a}{c}}*Vol(\overline{P})\ [/mm] =\ [mm] \bruch{\pi}{2\wurzel{a\,c}}$ [/mm]


Und tschüss !     [winken]

Bezug
                                                                
Bezug
Volumenberechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:42 Sa 29.11.2008
Autor: lenz

hallo
ich wollt mal fragen ob es bei zweitens sinn macht wenn man:
[mm] e\alpha^{²}+f\beta^{2}=ax^{2}+2bxy+cy^{²} [/mm]
[mm] \Rightarrow \alpha=\wurzel{\bruch{ax^{2}+2bxy+cy^{²}+f}{e}} [/mm]
für [mm] \beta=1 [/mm]
setzt
gruß lennart

Bezug
                                                                        
Bezug
Volumenberechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 22:39 Sa 29.11.2008
Autor: MathePower

Hallo lenz,

> hallo
>  ich wollt mal fragen ob es bei zweitens sinn macht wenn
> man:
>  [mm]e\alpha^{²}+f\beta^{2}=ax^{2}+2bxy+cy^{²}[/mm]
>  [mm]\Rightarrow \alpha=\wurzel{\bruch{ax^{2}+2bxy+cy^{²}+f}{e}}[/mm]
>  
> für [mm]\beta=1[/mm]
>  setzt


Das macht keinen Sinn.

Sinn macht in lineare Transformation

[mm]x=r_{1}*\tilde{x}+s_{1}*\tilde{y}[/mm]
[mm]y=r_{2}*\tilde{x}+s_{2}*\tilde{y}[/mm]

womit 2) auf 1) zurückgeführt wird.


>  gruß lennart


Gruß
MathePower

Bezug
                                                                                
Bezug
Volumenberechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:18 So 30.11.2008
Autor: lenz

hallo
irgendwie komm ich nicht weiter.wenn ich
[mm] x=r_{1}\cdot{}\tilde{x}+s_{1}\cdot{}\tilde{y} [/mm]
[mm] y=r_{2}\cdot{}\tilde{x}+s_{2}\cdot{}\tilde{y} [/mm]
setze,dann müßten [mm] x,y,\tilde{x},\tilde{y} [/mm]
doch diese:
[mm] a\cdot{}x^{2}+c\cdot{}y^{2}=e\cdot{}\tilde{x}^²+2\cdot{} f\cdot{}\tilde{x}\cdot{}\tilde{y}+g\cdot{}\tilde{y}^² [/mm]
gleichung erfüllen,oder nicht,also
[mm] a\cdot{}(r_{1}\cdot{}\tilde{x}+s_{1}\cdot{}\tilde{y})^{2}+c\cdot{}(r_{2}\cdot{}\tilde{x}+s_{2}\cdot{}\tilde{y})^{2}=e\cdot{}\tilde{x}^²+2\cdot{} f\cdot{}\tilde{x}\cdot{}\tilde{y}+g\cdot{}\tilde{y}^² [/mm]
nur ist das nicht besonders hilfreich,ich hab hier zuviele
Unbekannte.es müßten also noch weitere gleichungen oder ein neuer lösungsansatz her
kann mir vielleicht jemand einen tip geben
gruß lennart


Bezug
                                                                                        
Bezug
Volumenberechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:32 So 30.11.2008
Autor: MathePower

Hallo lenz,

> hallo
> irgendwie komm ich nicht weiter.wenn ich
>  [mm]x=r_{1}\cdot{}\tilde{x}+s_{1}\cdot{}\tilde{y}[/mm]
>  [mm]y=r_{2}\cdot{}\tilde{x}+s_{2}\cdot{}\tilde{y}[/mm]
>  setze,dann müßten [mm]x,y,\tilde{x},\tilde{y}[/mm]
>  doch diese:
>  [mm]a\cdot{}x^{2}+c\cdot{}y^{2}=e\cdot{}\tilde{x}^²+2\cdot{} f\cdot{}\tilde{x}\cdot{}\tilde{y}+g\cdot{}\tilde{y}^²[/mm]
>  
> gleichung erfüllen,oder nicht,also
>  
> [mm]a\cdot{}(r_{1}\cdot{}\tilde{x}+s_{1}\cdot{}\tilde{y})^{2}+c\cdot{}(r_{2}\cdot{}\tilde{x}+s_{2}\cdot{}\tilde{y})^{2}=e\cdot{}\tilde{x}^²+2\cdot{} f\cdot{}\tilde{x}\cdot{}\tilde{y}+g\cdot{}\tilde{y}^²[/mm]
>  
> nur ist das nicht besonders hilfreich,ich hab hier zuviele
>  Unbekannte.es müßten also noch weitere gleichungen oder
> ein neuer lösungsansatz her
>  kann mir vielleicht jemand einen tip geben


Wende hier doch die binomische Formel an,
und zwar so daß Du nur noch eine Summe von Quadraten stehen hast.


>  gruß lennart
>  


Gruß
MathePower

Bezug
                                                                                                
Bezug
Volumenberechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:29 So 30.11.2008
Autor: lenz

hi
Ich weiß ehrlich gesagt nicht was du meinst.Die linke Seite der Gleichung
ist ja schon in binomischer Form und die rechte Seite krieg
ich nicht in binomische form da dafür [mm] f=\wurzel{e\cdot{}g} [/mm] sein müßte.
Ich weiß auch nicht so recht was du mit Summe von Quadraten meinst.
Könntest du vielleicht etwas genauer werden?
Gruß lenz

  

Bezug
                                                                                                        
Bezug
Volumenberechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 13:25 Mo 01.12.2008
Autor: MathePower

Hallo lenz,

> hi
>  Ich weiß ehrlich gesagt nicht was du meinst.Die linke
> Seite der Gleichung
>  ist ja schon in binomischer Form und die rechte Seite
> krieg
>  ich nicht in binomische form da dafür [mm]f=\wurzel{e\cdot{}g}[/mm]
> sein müßte.
>  Ich weiß auch nicht so recht was du mit Summe von
> Quadraten meinst.
>  Könntest du vielleicht etwas genauer werden?

Um 2) auf 1) zurückzuführen, mußt Du irgendwie das gemischtquadratische Glied in

[mm]ax^{2}+\blue{2bxy}+cy^{2}[/mm]

wegtransformieren, so daß nach der Transformation da steht:

[mm]\tilde{a}\tilde{x}^{2}+\tilde{c}\tilde{y}^{2}[/mm]


>  Gruß lenz
>  
>  


Gruß
MathePower

Bezug
                                                                                        
Bezug
Volumenberechnung: Lösung zu Aufgabe 2
Status: (Antwort) fertig Status 
Datum: 11:22 Mo 01.12.2008
Autor: Al-Chwarizmi

hallo lennart

Um den Term  

          [mm] T=a*x^2+2*b*x*y+c*y^2 [/mm]

in einen Term ohne gemischtes Glied
zu verwandeln, kann man so vorgehen:

          [mm] $\bruch{T}{a}=x^2+2*\bruch{b*y}{a}*x+\bruch{c}{a}*y^2$ [/mm]

x-Term quadratisch ergänzen:

          [mm] $\bruch{T}{a}=x^2+2*\bruch{b*y}{a}*x\ \red{+\bruch{b^2}{a^2}*y^2}+\bruch{c}{a}*y^2\ \blue{-\bruch{b^2}{a^2}*y^2}$ [/mm]

          [mm] $\bruch{T}{a}=\left(x+\bruch{b}{a}*y\right)^2+\left(\bruch{c}{a}\ -\bruch{b^2}{a^2}\right)*y^2$ [/mm]

wieder mit a multipliziert:

          $\ [mm] T=a*\left(x+\bruch{b}{a}*y\right)^2+\left(c\ -\bruch{b^2}{a}\right)*y^2$ [/mm]

Setzen wir

          [mm] u:=x+\bruch{b}{a}*y\right [/mm]  und  [mm] d:=c-\bruch{b^2}{a} [/mm]

so wird

          [mm] T=a*u^2+d*y^2 [/mm]

Darauf kann man nun die Erkenntnisse aus
Aufgabe 1 anwenden. Dort haben wir gefunden,
dass

          $\ Vol(P)=\ [mm] \bruch{\pi}{2*\wurzel{a*c}}$ [/mm]

Auf die neue Situation mit  [mm] Q=\{(x/y/z)\in\IR^3\ |\ T(x,y)\le z \le 1\} [/mm]
angewandt, bedeutet dies:


          $\ Vol(Q)=\ [mm] \bruch{\pi}{2*\wurzel{a*d}}\ [/mm] =\ [mm] \bruch{\pi}{2*\wurzel{a*(c-\bruch{b^2}{a})}}\ [/mm] =\ [mm] \bruch{\pi}{2*\wurzel{a*c-b^2}}$ [/mm]

Eine Frage bleibt noch: weshalb wird in der
Aufgabenstellung verlangt, dass die Matrix

          $\ [mm] A=\pmat{a&b\\b&c}$ [/mm]

positiv definit sein soll? Zum einen garantiert
dies, dass a>0 ist, wie das in Aufgabe 1 erfor-
derlich ist. Damit die Gleichung

          [mm] T=a*u^2+d*y^2=z [/mm] (z>0)

im u-y-z-Raum wirklich Ellipsen liefert, müsste
natürlich nebst a auch d positiv sein:

          [mm] d:=c-\bruch{b^2}{a}>0\ \gdw\ a*c-b^2>0 [/mm]

Der Ausdruck [mm] a*c-b^2 [/mm] ist aber genau die Determinante
der Matrix A, und die ist für eine positiv definite
Matrix positiv.


[winken]  Al-Chwarizmi
        




Bezug
                                                                                                
Bezug
Volumenberechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:31 Mo 01.12.2008
Autor: lenz

alles klar
danke,wär ich nicht draufgekommen
gruß lennart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]