Vorschrift einer Folge < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
|
Status: |
(Antwort) fertig | Datum: | 12:39 Mi 27.01.2010 | Autor: | leduart |
Hallo
1. es gibt Zahlenfolgen und andere Folgen, wie Funktionenfolgen, Folgen von Punkten im [mm] R^n [/mm] und viele andere.
[mm] f_n(x)=(1+x/n)^n [/mm] ist ne Funktionenfolge, für z. bsp x=3 ne Zahlenfolge.
Ebenso die Reihe, die du als geom. Reihe bezeichnet hast ist keine zahlenreihe und keine Folge sondern eine Summe von Funktionen, wenn du bis n summierst.
Die Koeffizienten einer Zahlen-Reihe kannst du als Zahlen-Folgen hinschreiben.
oft werden auch Reihen als Folgen betrachtete, dann ist aber ein Folgenglied [mm] S_n=\summe_{i=1}^{n}a_i.
[/mm]
und die [mm] a_i [/mm] sind nicht die Folgenglieder.
Gruss leduart
|
|
|
|