matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikW. tropische Krankheit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Stochastik" - W. tropische Krankheit
W. tropische Krankheit < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

W. tropische Krankheit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:43 Sa 30.04.2022
Autor: Hannes00

Aufgabe
Die Wahrscheinlichkeit, dass sich ein Expeditionsteilnehmer mit einer tropischen
Krankheit infiziert hat, beträgt 20%.
(a) Um zu überprüfen, ob dieser an der Krankheit leidet, wird ein Test durchgefühhrt, der mit Wahrscheinlichkeit 99% das richtige Ergebnis anzeigt. Der Expeditionsteilnehmer erhält nun das Ergebnis, dass der Test positiv ausgefallen ist. Mit welcher Wahrscheinlichkeit leidet der Teilnehmer an der Krankheit?
(b) Nun nehmen wir an, es werden nicht wie in (a) ein Test, sondern n unabhängige Tests dieser Art durchgeführt. Auch nehmen wir nun an, das Ergebnis aller dieser Tests sei negativ ausgefallen. Wie groß muss n sein, um eine Infektion mit einer Wahrscheinlichkeit
von mindestens 99,999% ausschließen zu können?


Moin, mein Ansatz ist folgender:
Es handelt sich um bedingte Wahrscheinlichkeit. Also [mm] P_A(B) [/mm] = P(B|A) = [mm] \bruch{P(A\cap B)}{P(A)}. [/mm] Soweit sogut.

Es gilt: P(A [mm] \cap [/mm] B) = P(A) * P(B).
k = krank, p =postiv, g = gesund, n = negativ
a) Baumdiagramm gezeichent ##Überlasse ich der Leserin/dem Leser XD
[mm] P_p(k) [/mm] = P(k|p) = [mm] \bruch{P(k\cap p)}{ P(p)} [/mm]

              = [mm] \bruch{P(k) * P(p|k)}{(P(g\cap p)+ P(k\cap p)} [/mm]

              = [mm] \bruch{0,2 * 0,99}{0,2 * 0,99 +0,8 *0,01)} \approx [/mm] 0,9611

b) Baumdiagramm
P(negativ) = 0,794
[mm] P_n [/mm] (g) = P(g|n) = [mm] \bruch{P(g\cap n)}{P(n)} [/mm]
= [mm] \bruch{P(g) * P (n|g)}{P(g)* P(n|g) + P(k) * P(n|k)} [/mm]

= [mm] \bruch{0,8 *0,99}{0,8*0399 +0,2*0,01} [/mm] = 0,9975.
Die Wahrheit für g und k bleibt also gleich, also setzte die Bedindungen in Realation:
P(g|n) [mm] \ge [/mm]  0,99999
[mm] \bruch{{P(g) * P(n|g)}^n}{P(g)* P(n|g)^{n} + P(k) * P(n|k)^{n}} [/mm]

mit n = 1: 0,99748
     n = 2: 0,99997
     n = 3: 0,999999...

-> Also sind 3 negative Tests notwendig, um eine Infektion auszuschließen.

Was sagt ihr dazu? Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


Edit: Lol. Ich habe gerade Feedback zu meiner Aufgabe von den Kontrolleuren bekommen: 2/2 Punkte. Hat sich also erledigt und scheint alles richtig zu sein.

        
Bezug
W. tropische Krankheit: Antwort
Status: (Antwort) fertig Status 
Datum: 16:25 So 01.05.2022
Autor: Gonozal_IX

Hiho,

> Es gilt: P(A [mm]\cap[/mm] B) = P(A) * P(B).

Nein, das gilt nicht.
Damit ist der Rest entsprechend Schwachsinn…

> Edit: Lol. Ich habe gerade Feedback zu meiner Aufgabe von
> den Kontrolleuren bekommen: 2/2 Punkte. Hat sich also
> erledigt und scheint alles richtig zu sein.

"Scheinbar" trifft es ganz gut… und das spiegelt das Problem unseres Bildungssystems wider… hat wohl niemand Bock deine Aufgaben anständig zu korrigieren.

Gruß,
Gono


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]