matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExp- und Log-FunktionenWachstum
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Exp- und Log-Funktionen" - Wachstum
Wachstum < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wachstum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:18 Mo 14.10.2013
Autor: lukky18

Aufgabe
Abi 2010
Geschwindigkeit eines Motorboots wird durch
v(t) = 960e^-t - 960 e^-2t beschrieben
Bestimmen sie die Geschwindigkeit in den ersten 5 Minuten

Lösung 1. Ableitung = 0

-960e^-t - 960 e^-2t = 0
kann ich dies durch logaritmieren lösen  oder geht das nur mit dem GTR

        
Bezug
Wachstum: Integration
Status: (Antwort) fertig Status 
Datum: 18:22 Mo 14.10.2013
Autor: Loddar

Hallo lukky!


Ist hier die "Durchschnittsgeschwindigkeit in den ersten 5 Minuten" gesucht?
Davon gehe ich jetzt mal aus.

Dann gilt es, folgendes Integral zu lösen:

[mm]v_m(\blue{0};\red{5}) \ = \ \bruch{1}{\red{5}-\blue{0}}*\integral_{\blue{0}}^{\red{5}}{v(t) \ dt} \ = \ \bruch{1}{5}*\integral_0^5{960*e^{-t}-960*e^{-2t} \ dt}[/mm]


Gruß
Loddar

Bezug
                
Bezug
Wachstum: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:03 Mo 14.10.2013
Autor: abakus


> Hallo lukky!

>
>

> Ist hier die "Durchschnittsgeschwindigkeit in den ersten 5
> Minuten" gesucht?
> Davon gehe ich jetzt mal aus.

>

> Dann gilt es, folgendes Integral zu lösen:

>

> [mm]v_m(\blue{0};\red{5}) \ = \ \bruch{1}{\red{5}-\blue{0}}*\integral_{\blue{0}}^{\red{5}}{v(t) \ dt} \ = \ \bruch{1}{5}*\integral_0^5{960*e^{-t}-960*e^{-2t} \ dt}[/mm]

>
>

> Gruß
> Loddar

Hallo Loddar,
das gilt natürlich nur, wenn deine Vermutung richtig ist (lukky hat nichts dazu geschrieben), dass eine Zeiteinheit einer Minute entspricht.
Gruß Abakus

Bezug
                        
Bezug
Wachstum: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:08 Mo 14.10.2013
Autor: lukky18

nein die Höchste Geschwindigkeit ist gefragt

Bezug
        
Bezug
Wachstum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:05 Mo 14.10.2013
Autor: lukky18

ja auch aber ich möchte die höchste Geschwindigkeit in den ersten 5 Min. errechnen
da setze ich doch die 1.Abl. = 0
Ich kann das aber nicht lösen

Bezug
                
Bezug
Wachstum: Antwort
Status: (Antwort) fertig Status 
Datum: 19:10 Mo 14.10.2013
Autor: abakus


> ja auch aber ich möchte die höchste Geschwindigkeit in
> den ersten 5 Min. errechnen

Davon hören wir jetzt das erste Wort...

> da setze ich doch die 1.Abl. = 0

Richtig.
In deiner ersten Ableitung ist aber noch ein Fehler. Du hast beim Bilden der inneren Ableitung den Faktor -2 im zweiten Exponenten nicht berücksichtigt.
Wenn die Ableitung dann stimmt:
Verwandle deinen Ableitungsterm in ein Produkt, indem du e hoch (...) ausklammerst.
Gruß Abakus

> Ich kann das aber nicht lösen

Bezug
                        
Bezug
Wachstum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:49 Mo 14.10.2013
Autor: lukky18

Die erste Ableitung ist
-960e^-t + 1920 e^-2t = 0
e^-t(-960+1920e^-t) = 0
960=1920e^-t
e^-t = 2
-t = ln2
t= -ln2

Stimmt das bis hier?
jetzt setze ich t in die V(t) Gleichung ein
960e^069 - 960 [mm] e^1,386 [/mm]
1919,99 - 3.839.98
Ein neg Ergebnis kann nicht sein
Was habe ich falsch gemacht

Bezug
                                
Bezug
Wachstum: Antwort
Status: (Antwort) fertig Status 
Datum: 19:58 Mo 14.10.2013
Autor: Steffi21

Hallo

[mm] 960=1920*e^{-t} [/mm] ist noch ok

jetzt durch 1920 teilen

[mm] \bruch{960}{1920}=e^{-t} [/mm]

[mm] 0,5=e^{-t} [/mm]

Steffi

Bezug
                                        
Bezug
Wachstum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:17 Mo 14.10.2013
Autor: lukky18

ok dann ergibt das ERgebnis
t = -ln0,5
wenn ich das in die V(t) Gleichung einsetze kommt aber nicht das richtige ERgebnis heraus
960 e^ln(0,5) -960e^2ln(0,5) =
960 * 0,5 - 960*0,5*2 = 480-960

Was stimmt da nicht ?

Bezug
                                                
Bezug
Wachstum: Antwort
Status: (Antwort) fertig Status 
Datum: 20:22 Mo 14.10.2013
Autor: reverend

Hallo lukky,

> ok dann ergibt das ERgebnis
> t = -ln0,5
> wenn ich das in die V(t) Gleichung einsetze kommt aber
> nicht das richtige ERgebnis heraus
> 960 e^ln(0,5) -960e^2ln(0,5) =
> 960 * 0,5 - 960*0,5*2 = 480-960

>

> Was stimmt da nicht ?

Deine Umformung von [mm] -960e^{2\ln{(0,5)}} [/mm] ist falsch. Dieser Teilterm ergibt 240, das Gesamtergebnis ebenso.

Grüße
reverend

Bezug
                                                        
Bezug
Wachstum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:46 Mo 14.10.2013
Autor: lukky18

heisst das, dass 960e^2ln(0,5) umgeformt
960 * 05 *0,5=240 ergibt



Bezug
                                                                
Bezug
Wachstum: Antwort
Status: (Antwort) fertig Status 
Datum: 21:12 Mo 14.10.2013
Autor: leduart

Hallo
[mm] e^{ln0,5}=1/2 [/mm]
[mm] (e^{ln0,5})^2=1/4 [/mm]
ja
Gruss leduart


Bezug
        
Bezug
Wachstum: Antwort
Status: (Antwort) fertig Status 
Datum: 19:37 Mo 14.10.2013
Autor: leduart

Hallo lukky
da du ja Mathestudi bist und keine sehr junger Schüler(In)  sollte es möglich sein, deine Fragen genauer zu stellen. So stellst du mehrere Leute an, nur um dann mit der wahren Aufgabe rauszukommen.
bitte lies deine aufgabe vor dem Abschicken durch, und überlege, ob diu sie mit den angaben beantwortrn könntest. Am besten sind immer die Orginalaufgaben!
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]