matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExp- und Log-FunktionenWachstumsgleichungsprobleme
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Exp- und Log-Funktionen" - Wachstumsgleichungsprobleme
Wachstumsgleichungsprobleme < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wachstumsgleichungsprobleme: Allgemeine Frage
Status: (Frage) für Interessierte Status 
Datum: 11:21 Sa 01.12.2007
Autor: inuma

Aufgabe
Die Wachstumsgleichung lässt sich folgendermaßen darstellen:

N'(t)= k*N(t)

Da die Ableitung der Wachstumsfunktion sich nur durch eine multiplikative Konstante von der Wachstunsfunktion unterscheidet, ist es wohl naheliegend, die Wachstums funktion als Exponentialfunktion anzusetzen.

N(t) = [mm] N_{0}*e^{kt} [/mm]

Meine Frage ist die folgende:

Wie komme ich darauf, dass

N'(t)= k*N(t)

das gleiche ist wie

N(t) = [mm] N_{0}*e^{kt} [/mm]

?

Lösung

Die Frage hat sich erledigt

Die einzige Zahl die nach der Ableitung gleichbleibt ist e (eulersche Zahl)

N(t) = [mm] N_{0}*e^{kt} [/mm]

die Ableitung davon ist logischerweise

N'(t)= [mm] k*(N_{0}*e^{kt}) [/mm]

und [mm] N_{0}*e^{kt} [/mm] = N(t)

d.f

N'(t)= k*N(t)

Ich habe wirklich lange daran gesessen bis es mir klar wurde.

Danke für eure Aufmerksamkeit.
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]