matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitstheorieWahrscheinlichkeit
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Wahrscheinlichkeitstheorie" - Wahrscheinlichkeit
Wahrscheinlichkeit < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wahrscheinlichkeit: Zufallsvariablen
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 11:32 Sa 02.05.2015
Autor: mike1988

Aufgabe
Die Zufallsvariablen X und Y sind unabhängig und normatverteil mit
X [mm] \sim NV(\mu=0,\sigma^2=1) [/mm] und Y [mm] \sim NV(\mu=1,\sigma^2=1). [/mm]

Berechnen Sie die Wahrscheinlichkeit [mm] P(X+Y\le1) [/mm] und [mm] P(X-Y\le0)! [/mm]


Hallo!

Stehe gerade ziemlich auf der Leitung bei der Lösung dieses Beispiels!

Es gilt doch, dass die Summe von unabhängig normalverteilten Zufallsvariablen wiederum normalverteilt ist.

X [mm] \sim NV(\mu=0,\sigma^2=1) [/mm]
Y [mm] \sim NV(\mu=1,\sigma^2=1) [/mm]
X+Y [mm] \sim NV(\mu=1,\sigma^2=2) [/mm]

Somit kann ich über das Integral der Standardnormalverteilung von [mm] -\infty [/mm] bis 1 die Wahrscheinlichkeit für X+Y [mm] \le [/mm] 1 berechnen. Hierbei erhalte ich als Ergebnis 0,5. Soweit zum ertsen Punkt!

Nur stellt sich für mich jetzt die Frage, wie ich die Wahrscheinlichkeit X-Y [mm] \le [/mm] 0 berechnen kann? Funktioniert dies auch nach obigem Schema?

X [mm] \sim NV(\mu=0,\sigma^2=1) [/mm]
Y [mm] \sim NV(\mu=1,\sigma^2=1) [/mm]
X-Y [mm] \sim NV(\mu_{x}-\mu_{y},\sigma_{x}^2-\sigma_{y}^2) [/mm]


Vielen Dank für eure Hilfe!

Lg

        
Bezug
Wahrscheinlichkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 11:58 Sa 02.05.2015
Autor: Gonozal_IX

Hiho,

gibt zwei Wege:

1.) was weißt du denn über die Summe von unabhängigen, normalverteilten Zufallsvariablen?

2.) Wie berechnet du die Verteilung eines Zufallsvektors (X,Y) wenn du die gemeinsame Dichte [mm] f_{(X,Y)} [/mm] gegeben hast?
Das ist übrigens analog wie im rellen Fall.

Gruß,
Gono

Bezug
        
Bezug
Wahrscheinlichkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:09 Sa 02.05.2015
Autor: mike1988

Hallo!

Kann mir noch kurz jemand sagen, ob die zweite Folgerung richtig ist oder wie ich sonst die Wahrscheinlichkeit (x-y [mm] \le [/mm] 0) berehcnen kann?



DANKE!

Lg



Bezug
                
Bezug
Wahrscheinlichkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 13:30 Sa 02.05.2015
Autor: Thomas_Aut

Die Differenz ist wieder normalverteilt mit :

[mm] $\mu_{X-Y} [/mm] = [mm] \mu_{X}-\mu_{Y}$ [/mm] und [mm] $\sigma^{2}_{X-Y} [/mm] = [mm] \sigma^{2}_{X}+\sigma^{2}_{Y}$ [/mm]



lg

Bezug
                        
Bezug
Wahrscheinlichkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:43 Sa 02.05.2015
Autor: mike1988

Wunderbar, vielen Dank!

Lg

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]