matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitsrechnungWahrscheinlichkeit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Wahrscheinlichkeitsrechnung" - Wahrscheinlichkeit
Wahrscheinlichkeit < Wahrscheinlichkeit < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wahrscheinlichkeit: Kugel ziehen aus einer Urne
Status: (Frage) beantwortet Status 
Datum: 22:28 Sa 11.03.2006
Autor: ednahubertus

Aufgabe
In einer Urne befinden sich 5 rot und schwarze Kugel. Es wird immer eine Kugel gezogen und sofort zurückgelegt.
Es wird 3x eine Kugel gezogen. Wie hoch ist die Wahrscheinlichkeit, dass 2 Kugeln rot sind?

Wir haben

- 12 Elemente --> [mm] \bruch{1}{12} [/mm] pro Zug
- für rote Kugeln--> [mm] \bruch{5}{12} [/mm]
- für schwarz   --> [mm] \bruch{7}{12} [/mm]

Und nun ? Wir wissen recht nicht weiter?

annett

        
Bezug
Wahrscheinlichkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 22:35 Sa 11.03.2006
Autor: Leopold_Gast

Ziehen mit Zurücklegen!
Bernoulli-Experiment -> Bernoulli-Kette -> Anzahl der Erfolge ist binomial verteilt

Bezug
                
Bezug
Wahrscheinlichkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:54 Sa 11.03.2006
Autor: ednahubertus

ok.

Wir stehen nicht wie man an solche aufgaben herangeht.

und fragen uns,wie die Formel P(X=k)= [mm] \vektor{n \\ k}*x^{k}*(1-p)^{n-k} [/mm] zu nutzen ist.

was setzen wir wo in dieser Formel ein? Und Warum?

Bezug
                        
Bezug
Wahrscheinlichkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 23:46 Sa 11.03.2006
Autor: Walde

Ok, also zuallererst: eure Formel ist falsch, es muss richtig
[mm] P(X=k)=\vektor{n \\ k}\cdot{}p^{k}\cdot{}(1-p)^{n-k} [/mm]
heissen.
Wie passt diese Formel jetzt mit eurem Experiment zussammen? Folgendermassen:

In eurem Zufallsexperiment habt ihr für das Ereignis "es wird eine rote Kugel gezogen" schon die W'keit 5/12 ausgerechnet. Gut, die nennen wir zur Abkürzung p.
p=5/12
Die W'keit eine Schwarze zu ziehen ist 1-(5/12)=7/12.
Ihr wiederholt euer Experiment n=3 mal.
Wir brauchen jetzt eine Variable, die zählt, wieviele Kugeln rot sind, wenn wir dreimal ziehen. Dieser Variable ist eine Zufallsvariable, wir nennen sie X. X kann Werte zwischen 0 und 3 annehmen. Klar warum? Weil wir, wenn wir 3 mal ziehen 0,1,2 oder 3 rote Kugeln ziehen können.

Wie gross ist jetzt die W'keit X=2 rote zu ziehen? RRS soll bedeuten ich habe ROT ROT SCHWARZ gezogen, wie gross ist dafür die W'keit?
p*p*(1-p)
Aber die Reihenfolge ist egal. RRS RSR SRR sind alles Ereignisse, bei denen  X=2 ist. Allgemein: Wieviele Möglichkeiten habe ich 2 Rote auf 3 mögliche Plätze zu verteilen? für die erste 3, für die zweite noch 2 freie Plätze, also 3*2, allerdings kann ich ja gar nicht zwischen einer ersten und zweiten roten Kugel unterscheiden, sprich [mm] R_{1}R_{2}S [/mm] ist dasselbe wie
[mm] R_{2}R_{1}S. [/mm] Ich muss also 3*2 noch durch die Anzahl der Möglichkeiten teilen, die ich die gezogen roten Kugeln anordnen kann, also [mm] \bruch{3*2}{2}=3. [/mm] Noch allgemeiner: Wieviele Möglichkeiten gibt es k Kugeln, die nicht zu unterscheiden sind, auf n Plätze zu verteilen?  [mm] \vektor{n \\ k}=\bruch{n!}{k!(n-k)!} [/mm]

Und so kommt die Formel zusammen:
[mm] P(X=2)=\vektor{3 \\ 2}p^2*(1-p) [/mm]

Alles klar? ;)

L G. walde

Bezug
                                
Bezug
Wahrscheinlichkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:00 So 12.03.2006
Autor: ednahubertus

Danke Dir für die Hilfe.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]