matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitstheorieWahrscheinlichkeit
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Wahrscheinlichkeitstheorie" - Wahrscheinlichkeit
Wahrscheinlichkeit < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wahrscheinlichkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:43 Fr 28.03.2008
Autor: OJ.Boden

Aufgabe
In einer Kiste befinden sich N = 20 Teile, darunter sind K = 5 unbrauchbar. Es werden zur Kontrolle
n = 8 Teile entnommen. Wie groß ist die Wahrscheinlichkeit, daß sich darunter k = 3 unbrauchbare
Teile befinden?

Mein Problem ist, dass ich eine mathematische Null bin.
Wäre die Aufgabe mit zurücklegen, wäre es ja einfach. Die Wahrscheinlichkeit das ich ein unbrauchbares ziehe liegt bei 25 % und für ein brauchbares bei 75 %. [mm] 3\*\bruch{1}{4}+5*\bruch{3}{4}=4,5. [/mm] Das ganze durch 8 und ich liege bei einer Wahrscheinlichkeit von 56,25 %. Richtig?

Ohne Zurücklegen habe ich aber meine Probleme. Nehmen wir mal an ich ziehe die 3 unbrauchbaren. Das wäre dann [mm] \bruch{5}{20}+\bruch{4}{19}+\bruch{3}{18}. [/mm] Kann ich jetzt einfach so weitermachen und die 5 brauchbaren aus den restlichen 17 Stück ziehen? [mm] \bruch{15}{17}+\bruch{14}{16}+\bruch{13}{15}+\bruch{12}{14}+\bruch{11}{13}. [/mm]

Irgendwie glaube ich nämlich, dass ich mit dieser Überlegung komplett falsch liege.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Wahrscheinlichkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 20:59 Fr 28.03.2008
Autor: abakus


> In einer Kiste befinden sich N = 20 Teile, darunter sind K
> = 5 unbrauchbar. Es werden zur Kontrolle
>  n = 8 Teile entnommen. Wie groß ist die
> Wahrscheinlichkeit, daß sich darunter k = 3 unbrauchbare
>  Teile befinden?
>  Mein Problem ist, dass ich eine mathematische Null bin.
>  Wäre die Aufgabe mit zurücklegen, wäre es ja einfach. Die
> Wahrscheinlichkeit das ich ein unbrauchbares ziehe liegt
> bei 25 % und für ein brauchbares bei 75 %.
> [mm]3\*\bruch{1}{4}+5*\bruch{3}{4}=4,5.[/mm] Das ganze durch 8 und
> ich liege bei einer Wahrscheinlichkeit von 56,25 %.
> Richtig?

Nein. Für die Zugreihenfolge u-u-u-b-b-b-b-b wäre die Wahrscheinlichkeit
[mm] 0,25*0,25*0,25*0,75*0,75*0,75*0,75*0,75=0,25^3*0,75^3 [/mm]
Das ist aber nicht die einzige Mögliche Reihenfolge, um 3-mal u und 5-mal b zu ziehen.
Dafür gibt es [mm] \vektor{8 \\ 3} [/mm] Möglichkeiten.Die Wahrscheinlichkeit wäre [mm] \vektor{8 \\ 3}*0,25^3*0,75^3. [/mm]
(Es handelt sich dabei um eine Binomialverteilung mit n=8, k=3 und p=0,25).



>  
> Ohne Zurücklegen habe ich aber meine Probleme. Nehmen wir
> mal an ich ziehe die 3 unbrauchbaren. Das wäre dann
> [mm]\bruch{5}{20}+\bruch{4}{19}+\bruch{3}{18}.[/mm] Kann ich jetzt
> einfach so weitermachen und die 5 brauchbaren aus den
> restlichen 17 Stück ziehen?
> [mm]\bruch{15}{17}+\bruch{14}{16}+\bruch{13}{15}+\bruch{12}{14}+\bruch{11}{13}.[/mm]
>  
> Irgendwie glaube ich nämlich, dass ich mit dieser
> Überlegung komplett falsch liege.

Gut dass du zweifelst. Die Summe dieser ganzen Werte wäre größer als 1.
Beim beschriebenen Ziehen ohne Zurücklegen handelt es sich um eine []hypergeometrische Verteilung.

Viele Grüße
Abakus

>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Bezug
                
Bezug
Wahrscheinlichkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:50 Fr 28.03.2008
Autor: OJ.Boden

Oha, meine Mathe-Fähigkeiten liegen also wirklich bei Null. Schonmal vielen Dank für die extreme Hilfe.

Nochmal zum Problem mit Zurücklegen. Das mit der Binomialverteilung habe ich nun verstanden. Ihr Lösungsergebniss war [mm] \vektor{8 \\ 3}*0,25^3*0,75^3. [/mm]  Müsste es nicht aber [mm] \vektor{8 \\ 3}*0,25^3*0,75^5 [/mm] sein oder interpretiere ich da mein Tafelwerk schon wieder falsch? Ihre Wahrscheinlichkeit beträge dann 36,91 % und meins 20,76%

Bei dem Problem ohne Zurücklegen komme ich nun auf dieses Ergebniss.

P = [mm] (\vektor{5\\ 3}*\vektor{15 \\ 5})/\vektor{20\\ 8} [/mm]
P = 23,84 %

Bezug
                        
Bezug
Wahrscheinlichkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 22:32 Fr 28.03.2008
Autor: rabilein1

Unabhängig von dir habe ich das gleiche Ergebnis raus: [mm] \bruch{77}{323}=0.238 [/mm]

Die einzelnen Schritte dahin sind:
Zunächst mal tust du so, als ergäben die ersten drei Ziehungen die 3 Unbrauchbaren und die nächsten fünf Ziehungen die 5 Brauchbaren.

Und dann überlegst du dir, in wie viele Reihenfolgen du die acht gezogenen Teile legen kannst.

Als dritten Schritt musst du dann überlegen, dass du die Unbrauchbaren bzw. der Brauchbaren hinsichtlich der Reihenfolge untereinander austauschen könntest.

Nun hast du einen ellenlangen Bruch. Da kannst du viel kürzen, und am Ende kommt raus:
[mm] \bruch{77}{323} [/mm]  <-- siehe oben



Bezug
                        
Bezug
Wahrscheinlichkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 11:36 Sa 29.03.2008
Autor: abakus


> Oha, meine Mathe-Fähigkeiten liegen also wirklich bei Null.
> Schonmal vielen Dank für die extreme Hilfe.
>  
> Nochmal zum Problem mit Zurücklegen. Das mit der
> Binomialverteilung habe ich nun verstanden. Ihr
> Lösungsergebniss war [mm]\vektor{8 \\ 3}*0,25^3*0,75^3.[/mm]  Müsste
> es nicht aber [mm]\vektor{8 \\ 3}*0,25^3*0,75^5[/mm] sein oder

Sicher. Habe mich leider verschrieben.
Gruß Abakus


> interpretiere ich da mein Tafelwerk schon wieder falsch?
> Ihre Wahrscheinlichkeit beträge dann 36,91 % und meins
> 20,76%
>  
> Bei dem Problem ohne Zurücklegen komme ich nun auf dieses
> Ergebniss.
>  
> P = [mm](\vektor{5\\ 3}*\vektor{15 \\ 5})/\vektor{20\\ 8}[/mm]
>  P =
> 23,84 %


Bezug
                                
Bezug
Wahrscheinlichkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:53 Sa 29.03.2008
Autor: OJ.Boden

Sehr schön. Dann bin ich vorerst im Bilde. Vielen Dank euch beiden.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]