matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitsrechnungWahrscheinlichkeit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Wahrscheinlichkeitsrechnung" - Wahrscheinlichkeit
Wahrscheinlichkeit < Wahrscheinlichkeit < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wahrscheinlichkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:43 Do 11.06.2009
Autor: Dinker

Aufgabe
[Dateianhang nicht öffentlich]>


a)

10 Gerade und 10 Ungerade Zahlen


UUG = [mm] \bruch{10}{20} [/mm] * [mm] \bruch{9}{19} [/mm] * [mm] \bruch{10}{18} [/mm] * 3 = [mm] \bruch{15}{38} [/mm]

GGG = [mm] \bruch{10}{20} [/mm] *  [mm] \bruch{9}{19} [/mm] *  [mm] \bruch{8}{18} [/mm] =  [mm] \bruch{2}{19} [/mm]

GGU = (siehe oben) =  [mm] \bruch{15}{38} [/mm]
Zusammengezählt wäre das theoretisch  [mm] \bruch{17}{19} [/mm]
Was mache ich falsch?

b)

6 Einer und eine andere : [mm] (\bruch{1}{6})^{6} [/mm] * [mm] \bruch{5}{6} [/mm] * 7 = 0.00013

7 Einer =  [mm] (\bruch{1}{6})^{7} [/mm]

Zusammen: 0.00013
Was mache ich falsch?

c)
gewinnen: 0.464
nicht gewinnen: 0.536

[mm] 0.536^{x} [/mm]  < 0.001

Ergäbe bei mir 12x.
Was mache ich falsch?

d) Hier habe ich grosse Schwierigkeiten. Ich zeige mal meine falsche Methode, damit ihr mir aufzeigen könnte, worin der Überlegensfehler liegt

P(E) = [mm] \bruch{0.027}{0.02 + 0.027+0.03} [/mm] = 0.35

Danke Gruss Dinker




Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
        
Bezug
Wahrscheinlichkeit: a), b) +d)
Status: (Antwort) fertig Status 
Datum: 15:27 Do 11.06.2009
Autor: barsch

Warum folgt auf jede deiner Lösungen der Satz:

Was mache ich falsch?

Ein bisschen mehr selbstvertrauen ;-)

Aufgabe d) hast du schon in zahlreichen Diskussionen gepostet.

Der Artikel mit dem Namen Aufgabe 1 d

Aufgabe a)

> 10 Gerade und 10 Ungerade Zahlen
>  
>
> UUG = [mm]\bruch{10}{20}[/mm] * [mm]\bruch{9}{19}[/mm] * [mm]\bruch{10}{18}[/mm] * 3 = [mm]\bruch{15}{38}[/mm]
>  
> GGG = [mm]\bruch{10}{20}[/mm] *  [mm]\bruch{9}{19}[/mm] *  [mm]\bruch{8}{18}[/mm]=[mm]\bruch{2}{19}[/mm]
>  
> GGU = (siehe oben) =  [mm]\bruch{15}{38}[/mm]
>  Zusammengezählt wäre das theoretisch  [mm]\bruch{17}{19}[/mm]
>  Was mache ich falsch?

Die Überlegung, dass bei mindestens einer Kugel mit gerader Ziffer das Produkt der drei Nummern gerade ist, ist doch schon mal gut - damit hast du schon mal so gut wie gewonnen.

Und ansonsten würde ich es genau so machen. In meinen Augen vollkommen richtig.

  

> b)
>  
> 6 Einer und eine andere : [mm](\bruch{1}{6})^{6}[/mm] * [mm]\bruch{5}{6}[/mm]
> * 7 = 0.00013
>  
> 7 Einer =  [mm](\bruch{1}{6})^{7}[/mm]
>
> Zusammen: 0.00013
>  Was mache ich falsch?

Nix

Gruß barsch

Bezug
                
Bezug
Wahrscheinlichkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:02 Do 11.06.2009
Autor: Dinker

Also ich staune immer wieder drüber wie ihr Monate alte Posts ausgraben könnt................

Bezug
                
Bezug
Wahrscheinlichkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:56 Fr 12.06.2009
Autor: Dinker

Ich komme bei dieser Aufgabe überhaupt nicht zurecht.

Kann ich das denn nicht mit einem Baumdiagramm lösen? Wäre fürs verständnis einfacher....

Es heisst doch:

Maschine 2 fällt aus unter der Bedingung dass genau eine Maschine einen defekt erleidet
ode nicht?

A = "Maschine 2 fällt aus"

B= " Eine Maschine erleidet einen Defekt"

Dann kann ich es ja schreiben wie bereits gesagt wurde:  

P(A/B) = [mm] \bruch{P(A \cap B) }{P(B)} [/mm]

A ist ja dann 0.027


und wieso ist B nicht: 0.03 + 0.027 + 0.02 = 0.077

also P(E) = [mm] \bruch{0.027*0.077}{0.077} [/mm] = 0.027...wieso geht das nicht?

denn A [mm] \cap [/mm] B ist ja P(A) * P(B)

Danke
gruss DInker





Bezug
                        
Bezug
Wahrscheinlichkeit: Bäume
Status: (Antwort) fertig Status 
Datum: 14:29 Fr 12.06.2009
Autor: weightgainer

Hallo,

im ersten Baum hast du drei Stufen, in jeder unterscheidest du zwischen "Maschine geht" und "Maschine geht nicht". Die W-keiten dafür hast du ja gegeben, weil die Maschinen unabhängig voneinander ausfallen. Deswegen stehen in der 2. und 3. Stufe des Baums auch gerade die gegebenen W-keiten.
[Dateianhang nicht öffentlich]
Jetzt geht es nur um die Pfade, bei denen genau eine Maschine kaputt geht. Davon gibt es drei Stück. Die W-keit, dass also genau eine Maschine kaputt geht, ist die Summe der W-keiten dieser drei Äste.
Das kannst du jetzt in einem zweiten Baum nutzen:
[Dateianhang nicht öffentlich]
Dort siehst du jetzt in der ersten Stufe die W-keit dafür, dass genau eine Maschine kaputt geht. In der zweiten Stufe willst du jetzt ja wissen, wie groß die W-keit ist, dass es Maschine 2 ist, wo du schon weißt, dass genau eine kaputt ist. Was du dann schon weißt, ist die W-keit, dass genau eine kaputt ist und dass das die Maschine 2 ist - das ist W-keit für den gesamten Pfad (dein A [mm] \cap [/mm] B).
Die gesuchte W-keit an dem Ast bekommst du jetzt durch die Division der beiden, denn das Produkt der Astwahrscheinlichkeiten muss ja hinten die W-keit ergeben.
Als Rechnung hast du das eh schon gesehen.

Dein Denkfehler:
Die W-keit 0,027 sagt dir, dass Maschine 2 kaputt geht ohne dass du berücksichtigst, was mit den anderen beiden Maschinen ist. D.h. in diesen 0,027 stecken die Fälle drin:
--> nur Maschine 2 ist kaputt (und M1 und M3 klappen)
--> M2 und M1 sind kaputt (und M3 klappt)
--> M2 und M3 sind kaputt (und M1 klappt)
--> M2, M1 und M3 sind kaputt
Davon interessiert dich aber jetzt nur der erste Fall. Die Berechnung hast du ja schon an anderer Stelle gezeigt bekommen.

Vielleicht wird es ja damit deutlicher...

Gruß,
weightgainer

Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
Anhang Nr. 2 (Typ: jpg) [nicht öffentlich]
Bezug
        
Bezug
Wahrscheinlichkeit: Urheberrechte beachten
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:06 Fr 12.06.2009
Autor: informix

Hallo Dinker,

hast du in der letzten Zeit mal unsere Forenregeln befragt, insbesondere diese hier??

Deine Fragen werden nicht zu beantworten sein, wenn du weiterhin ganze Aufgabentexte aus einem Lehrbuch hier als Scan einfügst und wir wegen Urheberrechtsverletzungen entfernen müssten.

Du erwartest von uns viel Hilfe; da wäre es schon pure Höflichkeit, wenn du die Aufgabentexte hier selbst hineinschreiben würdest statt sie zu scannen. Du würdest uns - und dir - die Bearbeitung massiv erleichtern!

Betrachte diesen Hinweis als letzte Aufforderung, die o.a. Regeln zu beachten, sonst müssen wir zu den angekündigten härteren Maßnahmen greifen...

Gruß informix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]