matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikWahrscheinlichkeitsberechnung
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Stochastik" - Wahrscheinlichkeitsberechnung
Wahrscheinlichkeitsberechnung < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wahrscheinlichkeitsberechnung: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 10:38 Di 27.11.2007
Autor: Kasper

Aufgabe
An einer Losbude können Lose gekauft werden die mit der
Wahrscheinlichkeit $p$ ein Treffer sind. Wer $m$ Trefferlose
hat gewinnt einen Preis. Wie groß ist die Wahrscheinlichkeit
zu gewinnen ohne mehr als $2m$ Lose gekauft zu haben.


Hallo,

das ist eine verflossene Übungsaufgabe, aber ich weiss immer
noch nicht wie das gehen soll. Ich habe versucht die
Möglichkeiten abzuzählen nach dem Motto für m=2: 1=Treffer
Außerdem sollte man wohl annehmen das man keine weiteren
Lose kauft, wenn man bereits gewonnen hat.

4 Lose können maximal gekauft werden, die Reihenfolge in der
Tabelle ist [mm] \\ [/mm]
Los4, Los3, Los2, Los1, Wahrscheinlichkeit

0000 [mm] $\quad (1-p)^4$ \\ [/mm]
0001 [mm] $\quad p(1-p)^3$ \\ [/mm]
0010 [mm] $\quad p(1-p)^3$ \\ [/mm]
0011 [mm] $\quad p^2$ [/mm] gewinn [mm] \\ [/mm]
0100 [mm] $\quad p(1-p)^3$ \\ [/mm]
0101 [mm] $\quad p^2(1-p)$ [/mm] gewinn [mm] \\ [/mm]
0110 [mm] $\quad p^2(1-p)$ [/mm] gewinn [mm] \\ [/mm]
0111 geht nicht [mm] \\ [/mm]
1000 [mm] $\quad p(1-p)^3$ \\ [/mm]
1001 [mm] $\quad p^2(1-p)^2$ [/mm] gewinn [mm] \\ [/mm]
1010 [mm] $\quad p^2(1-p)^2$ [/mm] gewinn [mm] \\ [/mm]
1011 geht nicht [mm] \\ [/mm]
1100 [mm] $\quad p^2(1-p)^2$ [/mm] gewinn [mm] \\ [/mm]
1101 geht nicht [mm] \\ [/mm]
1110 geht nicht [mm] \\ [/mm]
1111 geht nicht [mm] \\ [/mm]

11 Möglichkeiten für den Spielverlauf,
6 davon führen zum Gewinn, 5 nicht

Ich kann doch jetzt nicht einfach die
Gewinnwahrscheinlichkeiten addieren, oder?
(Das stimmt doch dann nie mit der Normierung,
sagt mir mein Gefühl.)

Ich bin dankbar für jeden Tipp, wie man da besser
herangehen kann.

Viele Grüße,
Kasper



        
Bezug
Wahrscheinlichkeitsberechnung: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:50 Do 29.11.2007
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]