matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitstheorieWahrscheinlichkeitsraum
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Wahrscheinlichkeitstheorie" - Wahrscheinlichkeitsraum
Wahrscheinlichkeitsraum < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wahrscheinlichkeitsraum: Glücksspiel
Status: (Frage) beantwortet Status 
Datum: 21:08 Di 13.02.2007
Autor: Baeni

Aufgabe
Man betrachte den zweimaligen Münzwurf und folgendes Spiel: Zeigen beide Münzen
Zahl, so er erhält man 3 Euro, zeigt nur eine Münze Zahl, so bezahlt man 1 Euro, und
zeigt keine Münze Zahl, so bezahlt man 2 Euro.
(a) Bestimmen Sie einen geeigneten Wahrscheinlichkeitsraum und eine geeignete Zufallsgröße X und geben Sie diesen Wahrscheinlichkeitsraum und die Zufallsgröße
X vollständig an.

Omega= [mm]\left\{(w_1,w_2,...,w_n);w_k \in \left\{\left\{zz\right\},\left\{zk\right\},\left\{kk\right\}\right\};k=1,..,n\right\}[/mm]
[mm]A_1[/mm]={zz}     [mm] P(A_1)=[/mm] [mm]\bruch {1}{4}[/mm]

[mm]A_2[/mm]={zk}     [mm] P(A_2)=[/mm] [mm]\bruch {2}{4}[/mm]

[mm]A_3[/mm]={kk}     [mm] P(A_3)=[/mm] [mm]\bruch {1}{4}[/mm]

X:Omega[mm]\rightarrow[/mm]omega´

omega´={{3},{-2},{-1}}

X({zz})=3; X({zk})=-2; X({kk})=-1

Ist es damit getan? Bzw. ist das richtig?
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt


        
Bezug
Wahrscheinlichkeitsraum: Antwort
Status: (Antwort) fertig Status 
Datum: 10:14 Mi 14.02.2007
Autor: Volker2

Hallo,

was ist $n$ in der Definition von [mm] $\Omega$? [/mm] Du scheinst danach mit dem korrektzen dreielementigen W-Raum
$$
[mm] \Omega=\{\{zz\},\{zk\},\{kk\}\} [/mm]
$$
weiterzuarbeiten. Volker

Bezug
        
Bezug
Wahrscheinlichkeitsraum: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 13:14 Mi 14.02.2007
Autor: Baeni

n ist die anzahl der durchgänge bzw. Würfe.
das heißt, dass für n=1, also der erste wurf [mm]\left\{zz\right\}[/mm] oder [mm]\left\{zk\right\}[/mm] oder [mm]\left\{kk\right\}[/mm] annehmen kann.

Also [mm] n \in \IN [/mm]

Und der Rest stimmt soweit?

Bezug
                
Bezug
Wahrscheinlichkeitsraum: Antwort
Status: (Antwort) fertig Status 
Datum: 16:12 Mi 14.02.2007
Autor: Volker2

Hallo,

wenn die Aufgabenstellung richtig ist, kommt in der Definition vo [mm] n\Omega [/mm] kein [mm] $n\in\IN$ [/mm] vor, da das Spiel nur ein einziges Mal gespielt wird. Wenn dem so ist, ist deine weitere Rechung o.k.

Volker.

p.s.: Vielleicht n=2, aber dann würde ich mit dem W-raum

[mm] \Omega'=\{k,z\}^n=\{k,z\}\times\{k,z\}, [/mm]

[mm] P'(\{(a,b)\}=\frac{1}{4}, [/mm]

[mm] \omega'=\{3,-2,-1\} [/mm] und der Zufallsvariablen

X'((k,z))=X'((z,k))=-2,
X'((z,z))=3
und X'((k,k))=-1

rechnen. Volker

Bezug
                        
Bezug
Wahrscheinlichkeitsraum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:16 Mi 14.02.2007
Autor: Baeni

Wegen der zweiten Teilaufgabe "Geben Sie die Verteilungsfunkton von X an" war meine überlegung, dass man das Spiel ja öfters durchführen muss und deswegen mein  [mm]n [mm] \in \IN. [/mm] Leider fehlt mir zu dieser Aufgabe jeglicher Ansatz. Sollte jemand eine Idee auch dazu haben, wäre ich sehr dankbar.

Bezug
                                
Bezug
Wahrscheinlichkeitsraum: Antwort
Status: (Antwort) fertig Status 
Datum: 11:26 Do 15.02.2007
Autor: Volker2

Hallo,

zur Bestimmung der Verteilungsfunktion braucht man das Experiment nicht mehrfach durchführen. Fazit: Man braucht kein [mm] $n\in\IN$ [/mm] und es gibt auch kein $n$ in der Aufgabe. Du mußt Dir nur noch die Definition der Verteilungsfunktion einer (reellwertige!) Zufallsvariablen anschauen.

Volker

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]