matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitsrechnungWahrscheinlichkeitsrechnung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Wahrscheinlichkeitsrechnung" - Wahrscheinlichkeitsrechnung
Wahrscheinlichkeitsrechnung < Wahrscheinlichkeit < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wahrscheinlichkeitsrechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:14 So 10.03.2019
Autor: Zwinkerlippe

Aufgabe
In einer Skizze ist folgender Würfel gegeben:
Zahl 1 ist 3x vorhanden
Zahl 2 ist 2x vorhanden
Zahl 3 ist 1x vorhanden
Anna Und Bernd vereinbaren folgendes Spiel:
Die beiden würfeln abwechselnd mit dem Würfel. Anna beginnt. Verlierer ist, wer als erster nicht mehr Augen als der Gegner im vorangegangenem Wurf würfelt. Mit welcher Wahrscheinlichkeit gewinnt Bernd?

Beste Grüße in den matheraum, ich habe

Anna würfelt 1, Bernd kann nur mit 2 oder 3 gewinnen

[mm] \bruch{3}{6}*\bruch{2}{6}+\bruch{3}{6}*\bruch{1}{6} [/mm]

Anna würfelt eine 2, Bernd kann nur mit 3 gewinnen

[mm] \bruch{2}{6}*\bruch{1}{6} [/mm]

Anna würfelt eine 3, Bernd kann nicht mehr gewinnen

ergibt also:

[mm] \bruch{3}{6}*\bruch{2}{6}+\bruch{3}{6}*\bruch{1}{6}+\bruch{2}{6}*\bruch{1}{6}=\bruch{11}{36} [/mm]

In der Lösung steht ohne Begründung [mm] \bruch{5}{18} [/mm] also [mm] \bruch{10}{36} [/mm]

mache ich einen Fehler oder ist die Lösung [mm] \bruch{5}{18} [/mm] falsch, danke


        
Bezug
Wahrscheinlichkeitsrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 12:12 So 10.03.2019
Autor: chrisno

Ichb finde in deiner Rechnung keinen Fehler.

Bezug
        
Bezug
Wahrscheinlichkeitsrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 14:05 So 10.03.2019
Autor: M.Rex

Hallo,

Wenn ich das richitg interpretiere, gewinnt Anna folgende Ereignisse

- [mm] A_{3} [/mm]
- [mm] A_{2}B_{\overline{3}} [/mm]
- [mm] A_{1}B_{2}A_{3} [/mm]

Hier gilt:
- [mm] P(A_{3})=\frac{1}{6} [/mm]
- [mm] P(A_{2}B_{\overline{3}})=\frac{2}{6}\cdot\frac{5}{6}=\frac{5}{18} [/mm]
- [mm] P(A_{1}B_{2}A_{3})=\frac{3}{6}\cdot\frac{2}{6}\frac{1}{6}=\frac{1}{36} [/mm]


Bernd gewinnt bei

- [mm] A_{1}B_{3} [/mm]
- [mm] A_{1}B_{2}A_{\overline{3}} [/mm]
- [mm] A_{2}B_{3} [/mm]

mit
- [mm] P(A_{1}B_{3})=\frac{3}{6}\cdot\frac{1}{6}=\frac{1}{12} [/mm]
- [mm] P(A_{1}B_{2}A_{\overline{3}})=\frac{3}{6}\cdot\frac{2}{6}\cdot\frac{5}{6}=\frac{5}{36} [/mm]
- [mm] P(A_{2}B_{3})=\frac{2}{6}\cdot\frac{1}{6}=\frac{1}{18} [/mm]

Damit komme ich auf die [mm] \frac{5}{18} [/mm] als Gewinnwahrscheinlichkeit von Bernd

Marius

Bezug
                
Bezug
Wahrscheinlichkeitsrechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:13 So 10.03.2019
Autor: Zwinkerlippe

Interessant die Überlegung danke M.Rex, es geht also um den folgenden Fall

1. Wurf Anna, würfelt eine 1
2. Wurf Bernd, würfelt eine 2
3. Wurf Anna, würfelt KEINE 3

jetzt steht in der Aufgabe "wer als erster nicht mehr Augen als der Gegner im vorangegangen Wurf würfelt"

der 1. Wurf von Anna mit der 1 ist doch aber der vorangegangene Wurf von Bernd, sie hat also als erste nicht mehr Augen als der Gegner gewürfelt,

Was nun?  Lösung der Aufgabe [mm] \bruch{5}{18} [/mm] oder [mm] \bruch{11}{36}? [/mm]

danke zwinkerlippe





Bezug
                        
Bezug
Wahrscheinlichkeitsrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 19:35 So 10.03.2019
Autor: Fulla

Hallo zwinkerlippe,

> Interessant die Überlegung danke M.Rex, es geht also um
> den folgenden Fall

>

> 1. Wurf Anna, würfelt eine 1
> 2. Wurf Bernd, würfelt eine 2
> 3. Wurf Anna, würfelt KEINE 3

in deiner ursprünglichen Frage formulierst du zwar richtig "Anna würfelt 1, Bernd kann nur mit 2 oder 3 gewinnen", ignorierst aber den Fall "Anna 1, Bernd 2, Anna 3", bzw. verbuchst ihn fälschlicherweise als Sieg für Bernd (da er im zweiten Wurf mehr Augen als Anna hatte).

> jetzt steht in der Aufgabe "wer als erster nicht mehr Augen
> als der Gegner im vorangegangen Wurf würfelt"

>

> der 1. Wurf von Anna mit der 1 ist doch aber der
> vorangegangene Wurf von Bernd, sie hat also als erste nicht
> mehr Augen als der Gegner gewürfelt,

>

> Was nun? Lösung der Aufgabe [mm]\bruch{5}{18}[/mm] oder
> [mm]\bruch{11}{36}?[/mm]

[mm]\frac{5}{18}[/mm], wie Marius bereits schrieb.


Lieben Gruß,
Fulla

Bezug
                                
Bezug
Wahrscheinlichkeitsrechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:40 So 10.03.2019
Autor: chrisno

Das Argument verstehe ich, den Fall habe ich nicht erkannt.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]