matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitsrechnungWahrscheinlichkeitsrechnung
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Wahrscheinlichkeitsrechnung" - Wahrscheinlichkeitsrechnung
Wahrscheinlichkeitsrechnung < Wahrscheinlichkeit < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wahrscheinlichkeitsrechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:28 Do 12.09.2013
Autor: Zwinkerlippe

Aufgabe
Geben Sie das Symbol für die Wahrscheinlichkeit beim 8-maligen Würfeln

a) mindestens 3 mal eine "4"
b) weniger als 4 mal eine "5"
c) höchstens 6 mal eine "1"
d) mehr als 3 mal eine "6" zu erhalten

Wieder Hallo, diese Aufgabe will ich heute noch schaffen, morgen oder übermorgen geht es weiter

a) ich weiß, es wird P(...) benutzt, zu rechnen ist ja nichts, aber mehr Ansätze kann ich nicht bieten, kann mir jemand Ansätze für a) geben, dann versuche ich es weiter zu lösen, Danke zwinkerlippe

        
Bezug
Wahrscheinlichkeitsrechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:38 Do 12.09.2013
Autor: Al-Chwarizmi


> Geben Sie das Symbol für die Wahrscheinlichkeit beim
> 8-maligen Würfeln
>  
> a) mindestens 3 mal eine "4"
>  b) weniger als 4 mal eine "5"
>  c) höchstens 6 mal eine "1"
>  d) mehr als 3 mal eine "6" zu erhalten
>  Wieder Hallo, diese Aufgabe will ich heute noch schaffen,
> morgen oder übermorgen geht es weiter
>  
> a) ich weiß, es wird P(...) benutzt, zu rechnen ist ja
> nichts, aber mehr Ansätze kann ich nicht bieten, kann mir
> jemand Ansätze für a) geben, dann versuche ich es weiter
> zu lösen, Danke zwinkerlippe



Guten Abend,

könntest du uns mitteilen, was du unter "Symbol für
eine gewisse Wahrscheinlichkeit" verstehst ?

LG ,   Al-Chw.


Bezug
                
Bezug
Wahrscheinlichkeitsrechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:43 Do 12.09.2013
Autor: Zwinkerlippe

Hallo, leider kann ich deine Frage nicht beantworten, so steht sie wörtlich auf unserem Übungsblatt zwinkerlippe

Bezug
                        
Bezug
Wahrscheinlichkeitsrechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:29 Do 12.09.2013
Autor: abakus


> Hallo, leider kann ich deine Frage nicht beantworten, so
> steht sie wörtlich auf unserem Übungsblatt zwinkerlippe

Hallo,
wurden in der Aufgabe zu Beginn irgendwelche Zufallsgrößen eingeführt?
Z.B.
"Sei X die Anzahl der geworfenen Vieren" ?
Gruß Abakus

Bezug
        
Bezug
Wahrscheinlichkeitsrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 21:39 Do 12.09.2013
Autor: Ladon

Da kann ich meinem Vorredner nur beipflichten, dass es schwer ist zu raten, was du meinst. Hier aber ein Versuch:
Vielleicht meinst du
[mm] $P(X=k)=\vektor{n \\ k}\cdot p^k\cdot q^{n-k}$ [/mm] auch Binomialverteilung genannt.
Allerdings hat das eher damit etwas zu tun, z.B. bei 4x Würfeln eine 6 zu würfeln:
[mm] $P(X=1)=\vektor{4 \\ 1}\cdot {\frac{1}{6}}^1\cdot {\frac{5}{6}}^{4-1}$. [/mm]
Für deinen Fall müsstest du wahrscheinlich folgende Formel nutzen:
[mm] $P(X\le k)=\summe_{i=0}^{k}\vektor{n \\ i}\cdot p^i\cdot (1-p)^{n-i}$ [/mm]
Z.B. ist auch [mm] $P(X>4)=1-P(X\le4)$ [/mm] möglich oder [mm] $P(X<3)=P(X\le2)$ [/mm] oder [mm] $P(3

Bezug
        
Bezug
Wahrscheinlichkeitsrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 03:15 Fr 13.09.2013
Autor: tobit09

Hallo Zwinkerlippe,


auch ich kenne den Kontext eurer Vorlesung nicht, in dem diese Aufgabe auftaucht. Passt folgendes dazu?

Wir modellieren den 8-fachen Würfelwurf durch

     [mm] $\Omega=\{(\omega_1,\omega_2,\ldots,\omega_8)\;|\;\omega_1,\omega_2,\ldots,\omega_8\in\{1,\ldots,6\}\}=\{1,2,3,4,5,6\}^8$. [/mm]

Dabei steht [mm] $(\omega_1,\omega_2,\ldots,\omega_8)\in\Omega$ [/mm] dafür, dass beim ersten Würfelwurf [mm] $\omega_1$, [/mm] beim zweiten Würfelwurf [mm] $\omega_2$, [/mm] ..., beim achten Würfelwurf [mm] $\omega_8$ [/mm] als Augenzahl erschien.

Sei $P$ die Laplace-Verteilung auf [mm] $\Omega$. [/mm]

Dann entspricht das "reale" Ereignis, dass mindestens dreimal eine vier gewürfelt wurde, dem "mathematischen" Ereignis

     [mm] $A:=\{(\omega_1,\ldots,\omega_8)\in\Omega\;|\;\omega_i=4\text{ für mindestens 3 }i\in\{1,\ldots,8\}\}\subseteq\Omega$. [/mm]

Die gesuchte Wahrscheinlichkeit bei a) ist also $P(A)$.


Viele Grüße
Tobias

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]