matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitsrechnungWahrsk. bei Flugzeugaufgabe
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Wahrscheinlichkeitsrechnung" - Wahrsk. bei Flugzeugaufgabe
Wahrsk. bei Flugzeugaufgabe < Wahrscheinlichkeit < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wahrsk. bei Flugzeugaufgabe: Aufgabe
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 14:41 Mi 12.11.2008
Autor: krueemel

Aufgabe
Seit etwa 10 Jahren ist die Anzahl der Abstürze von Verkehrsflugzeugen mit ca. 50 pro Jahr etwa konstant, obwohl der zivile Luftverkehr zugenommen hat.
a) Mit welcher Wahrscheinlichkeit werden an einem zufällig gewählten Tag eines Jahres 0, 1, 2, mehr als 2 Flugzeuge abstürtzen? Erläutern die Modellannahmen, die vorgenommen werden.
b) Gib einen Schätzwert an: an wie vielen Tagen des Jahres wird es keinen Absturz geben
c) Wie lautet in dieser Einkleidung die Fragestellung des klassischen Geburtstagproblems?

Hallo, zu a)
Modell: Kugel-Fächer-Modell, da man sich für die Anzahl der Abstürze an einem bestimmten aber beliebigen Tag interessiert und somit die Abstürze die Kugeln sind und die Tage die Fächer.

ist das richtig so weit?

nun zur Binomialverteilung,
p = [mm] \bruch{50}{365} [/mm]
n = 50
k = Anzahl der betrachteten Tage

Ist das richtig? oder ist n = 365? oder ist p = [mm] \bruch{1}{365} [/mm] ??

b) kann ich nicht beantworten, da ich mir unsicher über n und p bin.

c) Beispielfragestellung:
Man betrachtet eine Schulklasse mit 50 Kindern. Gib die Wahrscheinlichkeit an, dass an einem bestimmten aber beliebigen Tag 1,2, mehr als 2 GEburtstage sind!

Sind meine Lösungen soweit richtig? Dankeschön soweit:)

        
Bezug
Wahrsk. bei Flugzeugaufgabe: unsicher
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:06 Mi 12.11.2008
Autor: Adamantin


> Seit etwa 10 Jahren ist die Anzahl der Abstürze von
> Verkehrsflugzeugen mit ca. 50 pro Jahr etwa konstant,
> obwohl der zivile Luftverkehr zugenommen hat.
>  a) Mit welcher Wahrscheinlichkeit werden an einem zufällig
> gewählten Tag eines Jahres 0, 1, 2, mehr als 2 Flugzeuge
> abstürtzen? Erläutern die Modellannahmen, die vorgenommen
> werden.
>  b) Gib einen Schätzwert an: an wie vielen Tagen des Jahres
> wird es keinen Absturz geben
>  c) Wie lautet in dieser Einkleidung die Fragestellung des
> klassischen Geburtstagproblems?
>  Hallo, zu a)
>  Modell: Kugel-Fächer-Modell, da man sich für die Anzahl
> der Abstürze an einem bestimmten aber beliebigen Tag
> interessiert und somit die Abstürze die Kugeln sind und die
> Tage die Fächer.
>  
> ist das richtig so weit?
>  
> nun zur Binomialverteilung,
>  p = [mm]\bruch{50}{365}[/mm]
>  n = 50
>  k = Anzahl der betrachteten Tage
>  
> Ist das richtig? oder ist n = 365? oder ist p =
> [mm]\bruch{1}{365}[/mm] ??
>  

Also ich würde sagen, deine Überlegungen sind richtig, denn ich weiß nicht, wie viele Flugzeuge insgesamt in einem Jahr im Luftraum unterwegs sind, also kann ich die 50 Abstürze nicht in Beziehung zu allen Flugzeugen setzen! Damit bleibt mir nur die Angabe, innerhalb eines Jahres, also kann ich sagen, wenn 50 in einem Jahr abstürzen, dann ist die Wahrscheinlichkeit pro Tag eben [mm] \bruch{50}{365}, [/mm] wie du es für p gemacht hast.

Nur jetzt bin ich nicht mehr deiner Meinung...aber ich weiß keine andere Bezugsgröße, aber n kann nicht 50 sein, denn dein Stichprobenumfang ist ja nicht 50. Strenggenommen ist es auch keine Bernoullikette, daher würde ich vorschlagen, da es ja nicht heißt, dass 1 Flugzeug von 10!! Oder so abstürzt, sondern allgemein, dass du es einfach dementsprechend rechnest:

[mm] P(X=0)=\overline{p} [/mm]
P(X=1)=p
P(X=2)=p*p

aber wie gesagt, das ist sehr unsicher

Bezug
                
Bezug
Wahrsk. bei Flugzeugaufgabe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:03 Mi 12.11.2008
Autor: krueemel

ich bin mir nicht so sicher, aber ist nicht
p = [mm] \bruch{1}{365} [/mm]
n = 50

??

Bezug
                        
Bezug
Wahrsk. bei Flugzeugaufgabe: Antwort
Status: (Antwort) fertig Status 
Datum: 15:25 Do 13.11.2008
Autor: abakus


> ich bin mir nicht so sicher, aber ist nicht
>  p = [mm]\bruch{1}{365}[/mm]
>  n = 50
>  
> ??

Hallo,
die Binomialverteilung kannst du streng genommen nur anwenden, wenn du eine begrenzte (und vor allem bekannte) Flugzeuganzahl n hast, von denen 0, 1, 2, ... oder maximal alle n Flugzeuge an diesem Tag abstürzen.
Diese Maximalzahl n ist hier nicht vorgegeben.
Kennt ihr die Poissonverteilung?
Gruß Abakus


Bezug
                                
Bezug
Wahrsk. bei Flugzeugaufgabe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:53 Sa 15.11.2008
Autor: krueemel

nur diese Aufgabe stand unter dem Kapitel: Binomialverteilung. Und in dem Lösungsteil (den ich leider erst jetzt gefunden hab) ist n und p so, wie in meinem letzten Post beschrieben.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]