matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - MatrizenWeg einer irreduziblen Matrix
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Algebra - Matrizen" - Weg einer irreduziblen Matrix
Weg einer irreduziblen Matrix < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Weg einer irreduziblen Matrix: Weg einer Matrix finden
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 18:36 Sa 07.06.2014
Autor: Emilie1991

Aufgabe
Sei A 0 (aij) [mm] \in (\IR) [/mm] und A [mm] \ge [/mm] 0. Wir definieren einen gerichteten Graphen.

Guten Abend,

Zur Zeit beschäftige ich mich mit nichtnegativen Matrizen. Leider habe ich gar nicht verstanden wie man bei einer Matrix einen gerichteten Graphen angibt? Könnte mir dies vielleicht jemand an einem Beispiel erläutern?

Ich weiß, dass folgender Satz gilt:

Ist A nichtnegativ, so nennen wir A irreduzibel, falls es zu jedem Paar (i,j) mit i [mm] \not= [/mm] j einen gerichteten Weg von i nach j gibt.

Leider verstehe ich auch nicht wie das gemeint ist?

Ich wäre um Hilfe wirklich dankbar.

Mit freundlichen Grüßen Emilie

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Weg einer irreduziblen Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 19:03 Sa 07.06.2014
Autor: hippias

Ich vermute es ist eine Nachbarschaftsmatrix o.s.ae gemeint. Z.B. sei $A= [mm] \pmat{ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0}$ [/mm] und die Knotenmenge sei [mm] $\{1,2,3\}$. [/mm] Dann ist die zu $A$ gehoerige Kantenmenge [mm] $\{(1,2), (2,1), (3,2)\}$, [/mm] weil dies genau die Paare $(i,j)$ sind, fuer die [mm] $A_{i,j}= [/mm] 1$ ist. [mm] $A_{i,j}= [/mm] 1$ bedeutet also, dass eine Kante von $i$ nach $j$ existiert. Werte $>1$ koennten bedeuten, dass die Kanten durch entsprechend viele Kanten verbunden sind oder die Zahl dient zur Unterscheidung der Kanten (z.B. Farbe).

Zu der Irreduzibilitaet: Bei meinem obigen Superbeispiel gibt es einen Pfad von $3$ nach $1$ entlang der Kanten $(3,2)$ und $(2,1)$ (Laenge: $2$). Es gibt einen Pfad der Laenge $1$ von $1$ nach $2$, aber kein Pfad fuehrt nach $3$. Daher waere $A$ reduzibel.  


Bezug
        
Bezug
Weg einer irreduziblen Matrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:30 Sa 07.06.2014
Autor: Emilie1991

Ehrlich gesagt, habe ich das noch nicht wirklich verstanden :) Also ich habe hier eine 18x18 Matrix. Ich gebe einfach mal einen Ausschnitt davon an:

[mm] \pmat{ 0 & 4 & 3 \\ 1 & 0 & 4 \\ 3 & 1 & 0 } [/mm]

Der Weg der angeben ist:
1 -> 2 -> 3

Wie komme ich darauf?

Bezug
                
Bezug
Weg einer irreduziblen Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 20:15 Sa 07.06.2014
Autor: DieAcht

Hallo,


Ich verstehe dein Beispiel nicht. Es gibt viele Möglich-
keiten Irreduzibilität einer Matrix zu zeigen. Hippias
hat dir bereits das "einfachste" Kriterium gegeben. Viel-
leicht nochmal mit anderen Worten:

Man kann entscheiden, ob eine Matrix reduzibel oder ir-
reduzibel ist, indem man für [mm] A=(a_{ij})_{i,j=1,\ldots,n} [/mm] einen Graphen
mit [mm] $n\$ [/mm] Knoten konstruiert, indem eine gerichtete Kante
von Knoten [mm] $i\$ [/mm] zum Knoten [mm] $j\$ [/mm] existiert, wenn [mm] a_{ij}\not=0 [/mm] ist.
Kann man in diesem Graphen ausgehend von einem Knoten alle
anderen auf einem gerichteten Weg (Folge von gerichteten
Knoten) erreichen, ist [mm] $A\$ [/mm] irreduzibel, andernfalls reduzibel.


Gruß
DieAcht

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]