matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisWegintegral
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Analysis" - Wegintegral
Wegintegral < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wegintegral: Frage
Status: (Frage) beantwortet Status 
Datum: 13:58 So 03.07.2005
Autor: Ernesto

So ihr lieben eine schönen Sonntag vorab,
nun zum ernst der Lage :

Es sei gegeben:  [mm] \integral_ [/mm] {w [mm] \times [/mm] r dx} mit r = (x,y,z) und w = w ez

Sei weiter ein Weg  [mm] \gamma [/mm] wie folgt gegeben

Ein Dreieck mit den Koordinaten ( 0,0,0 ) ; ( a,0,0 ) ; ( a/2, b, 0)
Das Dreick ist gleichseitig
ich muss hier 3 Geraden parametrisieren. aber wie !!! ist ne Physikaufgabe und ich beiss mir die Zähne drann aus!!!

        
Bezug
Wegintegral: Parametrisierung
Status: (Antwort) fertig Status 
Datum: 20:17 So 03.07.2005
Autor: kuroiya

Hi

Für die Parametrisierungen ist es hilfreich, wenn du dir eine Skizze anfertigst, und dann noch ein bischen Geometrie und Trigometrie zuhilfe nimmst.

Ich habe den Weg um das Dreieck in 3 Wegteile unterteilt, der erste, [mm] \gamma_1 [/mm] führt der Unterkante entlang, [mm] \gamma_2 [/mm] geht von (a,0) zur Spitze hoch, und [mm] \gamma_3 [/mm] macht das Dreieck komplett.

[mm] \gamma_1 [/mm] ist geschenkt, ich geh mal davon aus, dass du das auch noch gefunden hast.

Bei [mm] \gamma_2 [/mm] und [mm] \gamma_3 [/mm] kommt dann ein bischen Trigonometrie ins Spiel, wegen der gewissen Symmetrie muss der Grossteil der Denkarbeit jedoch nur einmal geleistet werden.

Da das Dreieck gleichschenklig ist, erhält man ein rechtwinkliges Dreieck, wenn man nur die Hälfte betrachtet (Skizze!). Das ist natürlich sehr hilfreich.

Wir betrachten nun einfach einmal ein Dreieck, wie auf der folgenden Skizze gezeigt wird:
[Dateianhang nicht öffentlich] (sobald ich rausgefunden habe, wie man hier Bilder hochladen kann...)
Die Parametrisierung in x-Richtung ist ja auch diesmal wieder kein Problem. Wir wählen t als Laufparameter. Da uns Höhe und Länge des Dreiecks bekannt sind, können wir den Winkel [mm] \alpha [/mm] berechnen:
[mm] \alpha [/mm] = [mm] \arctan(\frac{2b}{a}) [/mm]
Ein Punkt P auf der gesuchten Geraden hat nach trigonometrischen Überlegungen die Koordinaten (t, [mm] t*tan\alpha) [/mm] = (t, [mm] t*\frac{2b}{a}), [/mm] wobei t von 0 nach [mm] \frac{a}{2} [/mm] läuft.

Um das nun auf die Streckenteile anzuwenden (im ursprünglichen Problem): [mm] \gamma_2 [/mm] = (t, [mm] (a-t)\frac{2b}{a}), [/mm] t [mm] \in [/mm] (a, [mm] \frac{a}{2}), \gamma_2 [/mm] = (t, [mm] t\frac{2b}{a}), [/mm] t [mm] \in (\frac{a}{2},0). [/mm]

Dateianhänge:
Anhang Nr. 1 (Typ: JPG) [nicht öffentlich]
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]