matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenWellengleichung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Reelle Analysis mehrerer Veränderlichen" - Wellengleichung
Wellengleichung < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wellengleichung: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 09:43 Mi 28.03.2007
Autor: Nofi

Aufgabe
Drücken sie die Wellengleichung:
[mm] z_x_x - \bruch{1}{4}z_t_t =0 [/mm]

durch die Koordinaten (u,v) aus, wobei  [mm] u= x-2*t ; v=x+2*t [/mm]

Ehrlichgesagt hab ich keine Ahnung wie ich das machen soll.
Das einzige was ich bis jetzt hingeschrieben hab is :

[mm]\bruch{dz}{d^2x} - \bruch{1}{4} *\bruch{dz}{d^2t} =0 [/mm]

wäre dankbar für eure hilfe, komme mit dem ganzen zeugs irgendwie nicht klar


mfg

        
Bezug
Wellengleichung: Tipp
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:10 Mi 28.03.2007
Autor: wauwau

[mm]\bruch{dz}{dx} = \bruch{dz}{du}*\bruch{du}{dx} = -2*\bruch{dz}{du} [/mm]

jetzt weißt du alleine weiter??

Bezug
                
Bezug
Wellengleichung: physiker und mathe
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:50 Mi 28.03.2007
Autor: phili_guy

oh ja, wie ich's liebe, die physiker-art mit differenzialen umzugehen ... erweitern wir doch einfach mal mit "du" ^^. nen guten freund von mir, der übrigens den bundeswettbewerb mathematik gewonnen hat, hat das immer ganz verrückt gemacht ^^. aber wenigstens kommt man so auf die lösung ^^

Bezug
                        
Bezug
Wellengleichung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:19 Mi 28.03.2007
Autor: wauwau

DAs ist nicht die Physiker-art sondern eine Regel namens "Kettenregel" - schon gehört???

Bezug
                
Bezug
Wellengleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:07 Mi 28.03.2007
Autor: Nofi

mh ehrlich gesagt nicht .. könntest du mir das villeicht an einem einfachen beispiel zeigen ?

wie verfahre ich in meinem bsp dann mit dem [mm] [mm] \bruch{dz}{d^2x} [/mm]

Bezug
                        
Bezug
Wellengleichung: Tipp
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:26 Mi 28.03.2007
Autor: wauwau


> mh ehrlich gesagt nicht .. könntest du mir das villeicht an
> einem einfachen beispiel zeigen ?
>
> wie verfahre ich in meinem bsp dann mit dem
> [mm]\bruch{dz}{d^2x}[/mm]  


[mm] z_{xx} [/mm] = [mm] \bruch{dz}{d^2x}= \bruch{d\bruch{dz}{dx}}{dx}= \bruch{d(-2z_{u})}{dx}= [/mm] (Kettenregel) = [mm] -2*\bruch{d(z_{u})}{du}*\bruch{du}{dx} [/mm] = [mm] 4z_{uu} [/mm]

Bezug
                                
Bezug
Wellengleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:31 Mi 28.03.2007
Autor: Nofi

Sorry ich verstehs wirklich nicht ganz :/  wie kommst du denn von dz/dx auf -2 ?

und wie ich dann weiter fahren soll ist mir nicht klar

danke schonmal für deine hilfe

Bezug
                                        
Bezug
Wellengleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 14:58 Mi 28.03.2007
Autor: wauwau

Ich habe leider in vor. artikeln x mit t vertauscht und alles sehr verkürzt dargestellt.

Vielleicht Allgemeiner usn ausführlich:


F(x,t)    und dann die Koordinatentransformation   a=g(x,t) b=h(x,t) dann gilt nach Kettenregel

[mm] F_{x} [/mm] = [mm] F_{a}*a_{x} [/mm] + [mm] F_{b}*b_{x} [/mm]
[mm] F_{t} [/mm] = [mm] F_{a}*a_{t} [/mm] + [mm] F_{b}*b_{t} [/mm]

in deinem Beispiel
u=a=x-2t
v=b=x+2t

[mm] u_{x}=v_{x}=1 [/mm]
[mm] u_{t}=-2, v_{t}=2 [/mm]

daher:
[mm] z_{x} [/mm] = [mm] z_{u}+z_{v} [/mm]
[mm] z_{t} [/mm] = [mm] -2z_{u}+2z_{v} [/mm]

daher

[mm] z_{xx} [/mm] = [mm] (z_{u}+z_{v})_u*u_{x} [/mm] + [mm] (z_{u}+z_{v})_{v}*v_{x} [/mm] = [mm] z_{uu}+z_{vu}+z_{uv}+z_{vv} [/mm]
[mm] z_{tt} [/mm] = [mm] (-2z_{u}+2z_{v})_{u}*u_{t} [/mm] + [mm] (-2z_{u}+2z_{v})_{v}*v_{t} [/mm] = [mm] 4z_{uu}-4z_{vu}-4z_{uv}+4z_{vv} [/mm]

und somit

[mm] z_{xx}-\bruch{1}{4}z_{tt} [/mm] = [mm] 2z_{vu}+2z_{uv} [/mm]




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]