matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFourier-TransformationWellengleichung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Fourier-Transformation" - Wellengleichung
Wellengleichung < Fourier-Transformati < Transformationen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Fourier-Transformation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wellengleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:00 Mo 22.10.2012
Autor: folken

Aufgabe
Wir betrachten die Wellengleichung:
[mm] c^2*u_{xx} [/mm] = [mm] u_{tt} [/mm]
und führen die neuen Variablen
[mm] \xi [/mm] = x-ct , [mm] \eta [/mm] = x+ct
ein.

a) Führen Sie die Variablensubstitution durch, und drücken Sie [mm] u_{xx} [/mm] und [mm] u_{tt} [/mm] in Ableitungen von [mm] \xi [/mm] und  [mm] \eta. [/mm]

Hallo,

ich habe einen Ansatz und weiss nicht, ob mein Vorgehen so richtig ist oder nicht. Falls nicht, wäre es hilfreich zu wissen wie man hier richtig vorgeht. Ich würde u(x,t) = [mm] \xi(x-ct) [/mm] + [mm] \eta(x+ct) [/mm] zweimal ableiten und dann das ganze in
in die Gleichung [mm] c^2*u_{xx}=u_{tt} [/mm] einsetzen. (Bzw. würde ich u(x,t) zweimal nach t ableiten für [mm] u_{tt} [/mm] und zweimal nach x für [mm] u_{xx}) [/mm]

        
Bezug
Wellengleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 22:15 Mo 22.10.2012
Autor: notinX

Hallo,

> Wir betrachten die Wellengleichung:
>  [mm]c^2*u_{xx}[/mm] = [mm]u_{tt}[/mm]
>  und führen die neuen Variablen
> [mm]\xi[/mm] = x-ct , [mm]\eta[/mm] = x+ct
>  ein.
>  
> a) Führen Sie die Variablensubstitution durch, und
> drücken Sie [mm]u_{xx}[/mm] und [mm]u_{tt}[/mm] in Ableitungen von [mm]\xi[/mm] und  
> [mm]\eta.[/mm]
>  Hallo,
>  
> ich habe einen Ansatz und weiss nicht, ob mein Vorgehen so
> richtig ist oder nicht. Falls nicht, wäre es hilfreich zu
> wissen wie man hier richtig vorgeht. Ich würde u(x,t) =
> [mm]\xi(x-ct)[/mm] + [mm]\eta(x+ct)[/mm] zweimal ableiten und

wie kommst Du denn darauf? Es soll eine Variablentransformation durchgeführt werden, das heißt der eine Variablensatz (x,t) soll durch einen anderen [mm] ($\xi$,$\eta$) [/mm] ersetzt werden. Bei Dir tauchen nun alle 4 Variablen auf, außerdem ist keinerlei Funktionsvorschrift gegeben.

> dann das ganze
> in
> in die Gleichung [mm]c^2*u_{xx}=u_{tt}[/mm] einsetzen. (Bzw. würde
> ich u(x,t) zweimal nach t ableiten für [mm]u_{tt}[/mm] und zweimal
> nach x für [mm]u_{xx})[/mm]  

Gegeben ist eine Funktion $u=u(x,t)$. Diese sollst Du nun transformieren in eine Funktion [mm] $u=u(\xi,\eta)$ [/mm] D.h. Du musst x und t durch [mm] $\xi$ [/mm] und [mm] $\eta$ [/mm] ausdrücken. Dann kannst Du die Funktion mit Hilfe der Kettenregel ableiten, es gilt dann: [mm] $u=u(\xi(x,t),\eta(x,t))$ [/mm]

Gruß,

notinX

Bezug
                
Bezug
Wellengleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:03 Di 23.10.2012
Autor: folken

Hallo,

danke für deine Antwort. Leider verstehe ich noch nicht alle Zusammenhänge, deswegen meine Frage dazu:

Also u(x,t) wurde bei uns in der Vorlesung definiert als [mm] u(x,t)=\phi(x-ct)+\psi(x+ct) [/mm] (sorry ich hatte in meiner Frage die falschen funktionsnamen hingeschrieben). Da [mm] x-ct=\xi [/mm] und [mm] x+ct=\eta [/mm] gilt, dann gilt doch auch u(x,t) = [mm] \phi(\xi) [/mm] + [mm] \psi(\eta) [/mm] (Das ist doch dann hier mit Variablensubstitution gemeint oder ?).
Danach wüsste ich aber nicht, wie ich zweimal Ableite, um  [mm] u_{xx} [/mm] und [mm] u_{tt} [/mm] herauszubekommen.


Bezug
                        
Bezug
Wellengleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 14:56 Di 23.10.2012
Autor: notinX


> Hallo,
>  
> danke für deine Antwort. Leider verstehe ich noch nicht
> alle Zusammenhänge, deswegen meine Frage dazu:
>  
> Also u(x,t) wurde bei uns in der Vorlesung definiert als
> [mm]u(x,t)=\phi(x-ct)+\psi(x+ct)[/mm] (sorry ich hatte in meiner
> Frage die falschen funktionsnamen hingeschrieben). Da

das hättest Du auch gleich dazuschreiben können. Woher sollen wir wissen, was in Deiner Vorlesung definiert wird ;-)

> [mm]x-ct=\xi[/mm] und [mm]x+ct=\eta[/mm] gilt, dann gilt doch auch u(x,t) =
> [mm]\phi(\xi)[/mm] + [mm]\psi(\eta)[/mm] (Das ist doch dann hier mit
> Variablensubstitution gemeint oder ?).

Ja, etwas genauer:
[mm] $u(x,t)=\phi(\xi(x,t))+\psi(\eta(x,t))$ [/mm]

> Danach wüsste ich aber nicht, wie ich zweimal Ableite, um  
> [mm]u_{xx}[/mm] und [mm]u_{tt}[/mm] herauszubekommen.
>  

Ok, vereinfachen wir Die Sache erstmal ein wenig. Ich schätze, die gewöhnliche Kettenregel kennst Du. Wenn man nun eine Funktion $f(x,t)=u(v(x,t))$ hat, ist die Ableitung:
[mm] $f_x(x,t)=\frac{\partial}{\partial v}u(v(x,t))\cdot\frac{\partial}{\partial x}v(x,t)$ [/mm]
Ist das soweit nachvollziehbar, und wenn ja, kannst Du damit was anfangen?

Gruß,

notinX

Bezug
                                
Bezug
Wellengleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:51 Di 23.10.2012
Autor: folken

Danke das hat mir geholfen,

Wenn ich dich richtig verstanden habe, wäre das Ergebnis dann:

[mm] u_{xx}=\phi''(\xi(x,t))+\psi''(\eta(x,t)) [/mm]

[mm] u_{tt}=c^2(\phi''(\xi(x,t))+\psi''(\eta(x,t))) [/mm]

Bezug
                                        
Bezug
Wellengleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 21:38 Di 23.10.2012
Autor: MathePower

Hallo folken,

> Danke das hat mir geholfen,
>  
> Wenn ich dich richtig verstanden habe, wäre das Ergebnis
> dann:
>  
> [mm]u_{xx}=\phi''(\xi(x,t))+\psi''(\eta(x,t))[/mm]
>  
> [mm]u_{tt}=c^2(\phi''(\xi(x,t))+\psi''(\eta(x,t)))[/mm]  


Ja, das hast Du richtig verstanden. [ok]


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Fourier-Transformation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]