matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExp- und Log-FunktionenWendepunkt bei e-Funktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Exp- und Log-Funktionen" - Wendepunkt bei e-Funktion
Wendepunkt bei e-Funktion < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wendepunkt bei e-Funktion: Korrektur
Status: (Frage) beantwortet Status 
Datum: 00:12 Sa 14.10.2006
Autor: Marion_

Aufgabe
Ermitteln Sie den Wendepunkt des Schaubildes
f(t)= [mm] 3/(0,5+5,5e^{-0,36t}) [/mm]

Hallo,
ich habe die Aufgabe versucht zu rechnen, komme aber einfach auf keine Lösung und mein grafikfähiger Taschenrechner weiß leider auch keinen Rat.

Mein Lösungsansatz:

f''(t)=0
f'''(t) ungleich 0

f'(t)= [mm] (u'v-v'u)/v^2 [/mm]
u=3; u'=0
[mm] v=0,5+5,5e^{-0,36t}; v'=-1,98e^{-0,36t} [/mm]

f'(t)= [mm] (0*(0,5+5,5e^{-0,36t}+1,98e^{-0,36t}*3)/(0,5+5,5e^{-0,36t})^2 [/mm]
[mm] f'(t)=(5,95e^{-0,36t})/(o,5+5,5e^{-0,36t})^2 [/mm]

f''(t)= [mm] (2,1384e^{-0,36t}* (0,5+5,5e^{-0,36t}- 5,94e^{-0,36t}*(-0,72(0,5+5,5e^{-0,36t}))/(0,5+5,5e^{-0,36t})^3 [/mm]

f''(t)=0 -->
[mm] 2,1384e^{-0,36t}*(0,5+5,5e^{-0,36t}-5,94e^{-0,36t}*(-0,72(0,5+5,5e^{-0,36t})=0 [/mm]

[mm] 1,0692e^{-0,36t}+11,7612e^{2-0,36t}+1,98e^{-0,36t}-11,7612e^{2-0,36t}=0 [/mm]
1,0692e^(-0,36t)+1,98e(-0,36t)=0
Leider ist das gar nicht möglich, weil eine e-Funktion ja nie 0 werden kann...
Über Hilfe würde ich mich freuen.
Danke.

Gruß,
Marion.


        
Bezug
Wendepunkt bei e-Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 08:35 Sa 14.10.2006
Autor: Sigrid

Hallo Marion,

> Ermitteln Sie den Wendepunkt des Schaubildes
> f(t)= [mm]3/(0,5+5,5e^{-0,36t})[/mm]
>  Hallo,
> ich habe die Aufgabe versucht zu rechnen, komme aber
> einfach auf keine Lösung und mein grafikfähiger
> Taschenrechner weiß leider auch keinen Rat.
>  
> Mein Lösungsansatz:
>  
> f''(t)=0
>  f'''(t) ungleich 0
>  
> f'(t)= [mm](u'v-v'u)/v^2[/mm]
> u=3; u'=0
>  [mm]v=0,5+5,5e^{-0,36t}; v'=-1,98e^{-0,36t}[/mm]
>  
> f'(t)=
> [mm](0*(0,5+5,5e^{-0,36t}+1,98e^{-0,36t}*3)/(0,5+5,5e^{-0,36t})^2[/mm]
>  [mm]f'(t)=(5,95e^{-0,36t})/(o,5+5,5e^{-0,36t})^2[/mm]
>  
> f''(t)= [mm](2,1384e^{-0,36t}* (0,5+5,5e^{-0,36t}- 5,94e^{-0,36t}*(-0,72(0,5+5,5e^{-0,36t}))/(0,5+5,5e^{-0,36t})^3[/mm]
>

Die 2. Ableitung musst du noch einmal überprüfen.

Du hast

$ u=0,94 [mm] e^{-0,36t} \Rightarrow [/mm] u' = -0,36 [mm] \cdot [/mm] 5,94 [mm] \cdot e^{-0,36t} [/mm] $  

und

$ v = (0,5 + 5,5 [mm] e^{-0,36t})^2 \Rightarrow [/mm] v' = -2 [mm] \cdot [/mm] 0,36 [mm] \cdot [/mm] 5,5 [mm] \cdot e^{-0,36t}(0,5 [/mm] + 5,5 [mm] e^{-0,36t}) [/mm] $

> f''(t)=0 -->
> [mm]2,1384e^{-0,36t}*(0,5+5,5e^{-0,36t}-5,94e^{-0,36t}*(-0,72(0,5+5,5e^{-0,36t})=0[/mm]
>  
> [mm]1,0692e^{-0,36t}+11,7612e^{2-0,36t}+1,98e^{-0,36t}-11,7612e^{2-0,36t}=0[/mm]

Hier taucht noch ein Fehler auf:

$ [mm] e^{-0,36t} \cdot e^{-0,36t} [/mm] = [mm] (e^{-0,36t})^2 [/mm] $

Lass das Quadrat auch stehen. Du kannst nämlich dann substituieren:

$ z = [mm] e^{-0,36t} [/mm] $

So erhälst du eine quadratische Gleichung in z.

Du müsstest 2 Nullstellen von f'' bekommen.

Gruß
Sigrid

>  1,0692e^(-0,36t)+1,98e(-0,36t)=0
>  Leider ist das gar nicht möglich, weil eine e-Funktion ja
> nie 0 werden kann...
>  Über Hilfe würde ich mich freuen.
> Danke.
>
> Gruß,
>  Marion.
>  

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]