matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGanzrationale FunktionenWendestellen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Ganzrationale Funktionen" - Wendestellen
Wendestellen < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wendestellen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:12 Mo 28.05.2007
Autor: Shabi_nami

Aufgabe
Bestimmen sie die Wnedestellen von f

f(x)= [mm] \bruch{1}{20}x^5-\bruch{8}{3}x^3 [/mm]

f'(x)= [mm] \bruch{1}{4}x^4-8x^2 [/mm]

f''(x)= [mm] x^3-16x [/mm]

f''(x)=0

[mm] x^3-16x=0 [/mm]

[mm] \gdw [/mm] x= 0  v x=4   v=-4

Monotoniebereiche:

x<-4            

-4<x<0        

0<x<4        

x>4        


es gibt ein Vorzeichenwechsel: f''(x)=x einsetzen


f(0)=0

f(4)= -119 [mm] \bruch{7}{15} [/mm]

f(-4)=119 [mm] \bruch{7}{15} [/mm]

Wendestellen:

W1 (0|0)

W2 (4|-119 [mm] \bruch{7}{15}) [/mm]

W3 (-4|119 [mm] \bruch{7}{15}) [/mm]


Ist die Lösung richtig???
Irgendwie kommen mir die Zahlen komisch vor.

        
Bezug
Wendestellen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:20 Mo 28.05.2007
Autor: Slartibartfast

Hallo Shabi_nami,

ich hab die gleichen Wendepunkte rausbekommen.
Was ist so komisch an den Zahlen?

Grüße
Slartibartfast

Bezug
                
Bezug
Wendestellen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:22 Mo 28.05.2007
Autor: Shabi_nami

Komische Zahlen *gg* nun ja 119 [mm] \bruch{7}{15} [/mm] ....meistens lösen wir Aufgaben mit gerade Zahlen daher.
Aber danke!

Bezug
                        
Bezug
Wendestellen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:25 Mo 28.05.2007
Autor: espritgirl

Hey Shabi *winke*

Mich haben diese komischen Brüche auch gestört - in meiner Klausur!!!

Allerdings habe ich die selben Ergebnisse raus gefunden - und selbst beim nachrechnen konnte ich keinen Fehler entdecken!

Liebe Grüße,

Sarah :-)



Bezug
                                
Bezug
Wendestellen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:28 Mo 28.05.2007
Autor: Shabi_nami

Hallo

Ja das ist komisch wenn man Brüche rausbekommt, da man immer denkt dass man was falsch gemacht hat *gg*

LG

Bezug
                                        
Bezug
Wendestellen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:33 Mo 28.05.2007
Autor: espritgirl

Ja, das stimmt wohl.

Gerade wird ja nochmal die Aufgabe von Yogi bearbeitet, vielleicht entdeckt er ja einen Fehler, den wir nicht gesehen haben.

Ich hoffe es nicht - sonst ist meine Garantie weg, dass die Klausur nicht unter 3 Punkten wird ;-)

Liebe Grüße,

Sarah :-)

PS: Habt ihr das Lambacher Schweizer Mathebuch? In diesem Buch sind immer "Rückblickaufgaben" mit Lösungen und da kommen wirklich die kompliziertesten Brüche (meistens sogar noch mit Wurzeln!) raus... Und dennoch ist die Aufgabe richtig gerechnet ;-)

Bezug
                        
Bezug
Wendestellen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:39 Mo 28.05.2007
Autor: yogi1803

Die Sache mit den glatten Zahlen klappt nicht immer. :-)

Bezug
        
Bezug
Wendestellen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:33 Mo 28.05.2007
Autor: yogi1803


> Bestimmen sie die Wnedestellen von f

Schreibfehler

> f(x)= [mm]\bruch{1}{20}x^5-\bruch{8}{3}x^3[/mm]
>  f'(x)= [mm]\bruch{1}{4}x^4-8x^2[/mm]
>  
> f''(x)= [mm]x^3-16x[/mm]
>  
> f''(x)=0
>  
> [mm]x^3-16x=0[/mm]
>  
> [mm]\gdw[/mm] x= 0  v x=4   v=-4
>  
> Monotoniebereiche:
>  
> x<-4            
>
> -4<x<0        
>
> 0<x<4        
>
> x>4        
>
>
> es gibt ein Vorzeichenwechsel: f''(x)=x einsetzen  ?


>
> f(0)=0
>  
> f(4)= -119 [mm]\bruch{7}{15}[/mm]

  
richtig

> f(-4)=119 [mm]\bruch{7}{15}[/mm]

muß so sein

> Wendestellen:
>  
> W1 (0|0)
>  
> W2 (4|-119 [mm]\bruch{7}{15})[/mm]
>  
> W3 (-4|119 [mm]\bruch{7}{15})[/mm]
>  
>
> Ist die Lösung richtig???

ja

>  Irgendwie kommen mir die Zahlen komisch vor.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]