matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenWert einer Potenzreihe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Folgen und Reihen" - Wert einer Potenzreihe
Wert einer Potenzreihe < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wert einer Potenzreihe: Angabe
Status: (Frage) beantwortet Status 
Datum: 16:18 Sa 06.05.2006
Autor: slash

Aufgabe
Berechnen Sie den Wert der Potenzreihe

[mm] \summe_{i=1}^{ \infty} nx^{n} [/mm]

Den Konvergenzradius hatte ich schnell bestimmt.
Mir fehlt jetzt überhaupt eine Idee, ein Ansatz, wie ich diesen Wert berechnen kann.
Danke,
               slash.

        
Bezug
Wert einer Potenzreihe: Antwort
Status: (Antwort) fertig Status 
Datum: 16:28 Sa 06.05.2006
Autor: felixf

Hallo slash!

> Berechnen Sie den Wert der Potenzreihe
>  
> [mm]\summe_{i=1}^{ \infty} nx^{n}[/mm]

Der uebliche Trick bei solchen Potenzreihen ist, diese als Ableitung einer anderen Potenzreihe zu schreiben. Wenn du $x$ ausklammerst und dir den Rest anschaust, bekommst du da eine Idee wovon das die Ableitung sein koennte?

LG Felix


Bezug
                
Bezug
Wert einer Potenzreihe: Geomer. Reihe
Status: (Frage) beantwortet Status 
Datum: 10:20 So 07.05.2006
Autor: slash

Das dachte ich auch.
Aber die geometrische Reihe startet doch beim index 0 und nicht eins ...

Bezug
                        
Bezug
Wert einer Potenzreihe: ALLES KLAR - danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:22 So 07.05.2006
Autor: slash

Jut.
Jetzt sehe ich es.
VIelen Dank,
slash

Bezug
                                
Bezug
Wert einer Potenzreihe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:39 So 07.05.2006
Autor: felixf

Hallo slash!

Selbst wenn es nicht gepasst haette, dann gibts immer noch die Methode 'hinzuaddieren und abziehen', etwa so: [mm] $\sum_{n=2}^\infty x^n [/mm] = [mm] \sum_{n=0}^\infty x^n [/mm] - [mm] x^1 [/mm] - [mm] x^0 [/mm] = [mm] \frac{1}{1 - x} [/mm] - x - 1 = [mm] \frac{1}{1 - x} [/mm] - [mm] \frac{(x + 1) (1 - x)}{1 - x} [/mm] = [mm] \frac{1 - (1 - x^2)}{1 - x} [/mm] = [mm] \frac{x^2}{1 - x}$. [/mm]

Oder passend ausklammern: [mm] $\sum_{n=2}^\infty x^n [/mm] = [mm] \sum_{n=0}^\infty x^{n+2} [/mm] = [mm] x^2 \sum_{n=0}^\infty x^n [/mm] = [mm] \frac{x^2}{1 - x}$. [/mm]

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]