matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAnalysis des R1Wertebereich trigon. Funktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Analysis des R1" - Wertebereich trigon. Funktion
Wertebereich trigon. Funktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wertebereich trigon. Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:56 Mo 04.08.2008
Autor: tedd

Aufgabe
Bestimmen Sie den Wertebereich folgender Funktion:
f(x)=3*sin(x)+4*cos(2x)

f(x)=3*sin(x)+4*cos(2x)
Habe ich erstmal umgeschrieben zu:
[mm] f(x)=6*sin(x)*cos(x)+4*cos^2(x)-4*sin^2(x) [/mm]
und ein bisschen nachgedacht...

sin(x) erreicht maximale Werte wo cos(x) Nullstellen hat.
cos(x) und sin(x) können maximale y-Werte von y=1 erreichen.

Ich dachte erst bei [mm] x=\bruch{\pi}{4} [/mm] also dem ersten Schnittpunkt von sin(x) und cos(x) wird ein maximalwert erreicht aber [mm] 4*cos^2(x)-4*sin^2(x) [/mm] wird dann ja 0 und es bleibt nur noch der linke Term über.
Bei x=0 bzw [mm] x=\bruch{\pi}{2} [/mm] fällt zwar 6*sin(x)*cos(x) und jeweils [mm] -4*sin^2(x) [/mm] oder [mm] 4*cos^2(x) [/mm] weg aber trotzdem müssten dort die Funktion doch ihre Maxima/Minima besitzen...

f(0)=4
[mm] f(\bruch{\pi}{2})=-4 [/mm]

Ist die Überlegung richtig?
Dann wäre der [mm] W_f=\{y|-4\ley\le4\} [/mm]

        
Bezug
Wertebereich trigon. Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 13:08 Mo 04.08.2008
Autor: M.Rex

Hallo

Ncihtt ganz. Berechne mal die Extrempunkte. Dann wirst du sehen, dass alle y-Werte auf einer (Bzw zwei) Parallelen zur x-Achse liegen, die aber nicht bei [mm] y=\pm4 [/mm] liegen.

[Dateianhang nicht öffentlich]

Also:

f'(x)=0
[mm] \gdw 3*\cos(x)+8*\sin(2x)=0 [/mm]
Jetzt nutze mal die Additionstheoreme:
[mm] \gdw 3*\cos(x)+8*\sin(2x)=0 [/mm]
[mm] \gdw 3*\cos(x)-16\sin(x)\cos(x)=0 [/mm]
[mm] \gdw \cos(x)*(3-16\sin(x))=0 [/mm]
[mm] \Rightarrow \cos(x)=0 \vee 3-16\sin(x)=0 [/mm]

Daraus berechne mal die Extrempunkte, und damit dann den Maximalen Def-bereich.

Marius



Dateianhänge:
Anhang Nr. 1 (Typ: jpeg) [nicht öffentlich]
Bezug
                
Bezug
Wertebereich trigon. Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:48 Mo 04.08.2008
Autor: tedd

Ahh Mist!
Mir ist ein Schreibfehler dazwischengekommen.
Tut mir total leid, sorry...

Die Funktion lautet egitl:
[mm] f(x)=3*sin({\color{red}2}x)+4*cos(2x) [/mm]

dann ist
f'(x)=6*cos(2x)-8*sin(2x)

[mm] 0=6*sin^2(x)-6*cos^2(x)-16*sin(x)*cos(x) [/mm]
Aber hier komme ich dann auch nicht mehr weiter :(

Bezug
                        
Bezug
Wertebereich trigon. Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 14:36 Mo 04.08.2008
Autor: M.Rex

Hallo

Du hast:

[mm] 0=6*\cos(2x)-8*\sin(2x) [/mm]
[mm] \gdw 0=6*\cos(2x)-8*\bruch{\sin(2x)*\cos(2x)}{\cos(2x)} [/mm]
[mm] \gdw 0=\cos(2x)*\left[6*\bruch{\cos(2x)}{\cos(2x)}-8*\bruch{\sin(2x)}{\cos(2x)}\right] [/mm]
[mm] \gdw 0=\cos(2x)*\left[6-8*\tan(2x)\right] [/mm]
[mm] \Rightarrow \cos(2x)=0 \vee 6-8*\tan(2x)=0 [/mm]

Marius

Bezug
                                
Bezug
Wertebereich trigon. Funktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:30 Mo 04.08.2008
Autor: tedd

Hey danke Marius!

0=cos(2x)
[mm] x=\bruch{\pi}{4} [/mm]

0=6-8*tan(2x)
[mm] x=\bruch{arctan(\bruch{6}{8})}{2} [/mm]

[mm] W_f=\{y|-5\le y \le5\} [/mm]

Gruß,
tedd

Bezug
                                
Bezug
Wertebereich trigon. Funktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:57 Mo 04.08.2008
Autor: Somebody


> Hallo
>  
> Du hast:
>  
> [mm]0=6*\cos(2x)-8*\sin(2x)[/mm]
> [mm]\gdw 0=6*\cos(2x)-8*\bruch{\sin(2x)*\cos(2x)}{\cos(2x)}[/mm]
>  
> [mm]\gdw 0=\cos(2x)*\left[6*\bruch{\cos(2x)}{\cos(2x)}-8*\bruch{\sin(2x)}{\cos(2x)}\right][/mm]
>  
> [mm]\gdw 0=\cos(2x)*\left[6-8*\tan(2x)\right][/mm]
>  [mm]\Rightarrow \cos(2x)=0[/mm][notok] [mm] \vee 6-8*\tan(2x)=0[/mm][ok]

Ein $x$ mit [mm] $\cos(2x)=0$ [/mm] kann keine Lösung der ursprünglichen Nullstellengleichung der Ableitung sein, denn für ein solches $x$ ist [mm] $\sin(2x)=\pm [/mm] 1$ und daher [mm] $6*\cos(2x)-8*\sin(2x)=6\cdot 0-8(\pm 1)\neq [/mm] 0$.
Es wäre einfacher gewesen, diese goniometrische Gleichung wie folgt umzuformen:

[mm]\begin{array}{lcll} 0 &=& 6*\cos(2x)-8*\sin(2x) &\big| +8\sin(2x)\\ 8\sin(2x) &=& 6\cos(2x) &\big| \div 8, \div \cos(2x)\\ \tan(2x) &=& \frac{3}{4} &\big| \arctan\\ 2x &=& \arctan\left(\frac{3}{4}\right)+n\cdot\pi, n\in\IZ &\big| \div 2\\ x &=& \frac{1}{2}\cdot\arctan\left(\frac{3}{4}\right)+n\cdot\frac{\pi}{2},n\in \IZ \end{array}[/mm]

Die Division durch [mm] $\cos(2x)$ [/mm] ist hier zulässig, weil wir $x$ mit [mm] $\cos(2x)=0$ [/mm] als mögliche Lösungen von vornherein ausschliessen können.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]