matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionenWertebereich von Funktionen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Funktionen" - Wertebereich von Funktionen
Wertebereich von Funktionen < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wertebereich von Funktionen: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 22:42 Sa 26.01.2013
Autor: dummbeutel111

Aufgabe
f(x)=2x+3/4x^24x-2

im Intervall [-3;0]

also ich versuche die letzten 2 stunden diese aufgabe zu lösen. komme aber einfach nicht drauf wie das funktioniert. das der wertebereich angibt, welche y-werte die funktion annehmen kann, weis ich. und trotzdem hab ich kein plan.
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Wertebereich von Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:57 Sa 26.01.2013
Autor: chrisno

Leider musst Du noch etwas mehr liefern. Bitte benutze den Formeleditor. Ist wirklich $f(x) = 2x + [mm] \bruch{3}{4x^{24x}}-2$ [/mm] ? Ich nehme an, Du hast ein paar Klammern weggelassen.
Dann aber fehlt noch etwas ganz Wichtiges: Die Frage.
(Die Antwort ist 42, aber das interessiert ja nicht.)


Bezug
                
Bezug
Wertebereich von Funktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:37 Sa 26.01.2013
Autor: dummbeutel111

Aufgabe
[mm] f(x)=(2x+3)/(4x^{2}+4x-2) [/mm]

hoffe, dass ich jetzt die Funktion richtig hingeschrieben hab.
Dazu muss ich den Wertebereich bestimmen. Einen Ansatz wie ich da vorgehen soll, wäre nett

Bezug
                        
Bezug
Wertebereich von Funktionen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:41 Sa 26.01.2013
Autor: dummbeutel111

ach fast vergessen. Den Wertebereich der Funktion im Intervall [-3;0] bestimmen.

Bezug
                        
Bezug
Wertebereich von Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 00:03 So 27.01.2013
Autor: M.Rex

Hallo

Der Wertebereich einer Funktion setzt sich aus dem Verhalten am Rand des Definitionsbereiches sowie aus den y-Koordinaten von globalen Hochpunkten zusammen.

Hier bei deiner Funktion ist ja der Definitionsbereich D=[-3;0] du hast aber innerhalb des zu betrachtenden Intervalles noch die Definitionslücke  [mm] x=\frac{1+\sqrt{3}}{2}, [/mm] denn dort ist der Nenner Null.

Untersuche also zuerst das Verhalten von f gegen die Definitionslücken und an den Rändern des Def-Bereichs.

Hier hast du, an den Rändern:

$ [mm] f(3)=\frac{2\cdot(-3)+3}{4\cdot(-3)^{2}+4\cdot(-3)-2}=\ldots [/mm] $
$ [mm] f(0)=\frac{2\cdot0+3}{4\cdot0^{2}+4\cdot0-2}=\ldots [/mm] $

Und an der Def-Lücke
[mm] \lim\limits_{x\uparrow\frac{1+\sqrt{3}}{2}}\frac{2x+3}{4x^{2}+4x-2}=\infty [/mm]
[mm] \lim\limits_{x\downarrow\frac{1+\sqrt{3}}{2}}\frac{2x+3}{4x^{2}+4x-2}=-\infty [/mm]

Hier hast du im Wertebereich schon die komplette Bandbreite von [mm] -\infty [/mm] bis [mm] +\infty, [/mm] also ist dein Wertebereich hier [mm] \IR. [/mm]

Hättest du nicht die komplette Bandbreite, müsstest du das ganze noch auf globale Hochpunkte/Tiefpunkte untersuchen, die y-Koordinaten dieser Punkte begrenzen dann den Wertebereich.

Marius


Bezug
                                
Bezug
Wertebereich von Funktionen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:19 So 27.01.2013
Autor: dummbeutel111

vielen dank marius. du hast mir sehr geholfen. hab total auf dem schlau gestanden :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]