matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-Komplexe ZahlenWiderspruch bei komplexer Zahl
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Analysis-Komplexe Zahlen" - Widerspruch bei komplexer Zahl
Widerspruch bei komplexer Zahl < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Widerspruch bei komplexer Zahl: Idee
Status: (Frage) beantwortet Status 
Datum: 18:51 So 07.06.2009
Autor: nenas

Aufgabe
Es gilt bekanntlich [mm] i^{2} [/mm] = -1.
Es ist aber  [mm] i^{2}=i*i=\wurzel{-1}*\wurzel{-1}=\wurzel{-1*(-1)}=\wurzel{1}=1. [/mm] Wie lässt sich dieser Widerspruch erklären?

Die Aufgabe habe ich selbst formuliert, wo steckt da der Widerspruch???
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Widerspruch bei komplexer Zahl: Antwort (fehlerhaft)
Status: (Antwort) fehlerhaft Status 
Datum: 19:03 So 07.06.2009
Autor: himbeersenf

Die Wurzel ist nur für nichtnegative Zahlen definiert. D.h. es gibt auch in den komplexen Zahlen keine Zahl [mm] \wurzel{-1}, [/mm] auch wenn die Gleichung [mm] x^2 [/mm] = -1 = [mm] i^2 [/mm] = [mm] (-i)^2 [/mm] die Lösungen i und -i hat. Der vermeintliche Widerspruch ist also keiner.

Viele Grüße,
Julia

Bezug
                
Bezug
Widerspruch bei komplexer Zahl: Korrekturmitteilung
Status: (Korrektur) fundamentaler Fehler Status 
Datum: 19:11 So 07.06.2009
Autor: Marc

Hallo Julia,

> Die Wurzel ist nur für nichtnegative Zahlen definiert. D.h.
> es gibt auch in den komplexen Zahlen keine Zahl
> [mm]\wurzel{-1},[/mm]

Doch, klar gibt es eine Zahl. Das Problem ist hier, dass es sogar mehrere solcher Zahlen gibt.

Viele Grüße,
Marc

Bezug
                
Bezug
Widerspruch bei komplexer Zahl: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 07:31 Mo 08.06.2009
Autor: fred97


> Die Wurzel ist nur für nichtnegative Zahlen definiert. D.h.
> es gibt auch in den komplexen Zahlen keine Zahl
> [mm]\wurzel{-1},[/mm]


Wenn das so wäre, was sind dann die komplexen Zahlen ??

FRED




> auch wenn die Gleichung [mm]x^2[/mm] = -1 = [mm]i^2[/mm] =
> [mm](-i)^2[/mm] die Lösungen i und -i hat. Der vermeintliche
> Widerspruch ist also keiner.
>  
> Viele Grüße,
>  Julia


Bezug
        
Bezug
Widerspruch bei komplexer Zahl: Antwort
Status: (Antwort) fertig Status 
Datum: 19:20 So 07.06.2009
Autor: Marc

Hallo nenas,

> Es gilt bekanntlich [mm]i^{2}[/mm] = -1.
>  Es ist aber  
> [mm]i^{2}=i*i=\wurzel{-1}*\wurzel{-1}=\wurzel{-1*(-1)}=\wurzel{1}=1.[/mm]
> Wie lässt sich dieser Widerspruch erklären?

Das Problem ist hier, dass über den komplexen Zahlen eine Wurzel nicht nur eine Zahl meint, sondern mehrere Zahlen. Z.B. ist über den komplexen Zahlen:
[mm] $\sqrt{-1}=\{i,-i\}$ [/mm]
Die Wurzel ist also eine Menge!
Wenn du nun [mm] $i*i=\sqrt{-1}*\sqrt{-1}$ [/mm] schreibst, dann hast du die is ersetzt durch zwei Mengen und müsstest dann [mm] $\{i,-i\}*\{i,-i\}$ [/mm] berechnen, was zunächst keinen Sinn macht. Auf jeden Fall ist aber [mm] $i*i\not=\sqrt{-1}*\sqrt{-1}$ [/mm] (sondern [mm] $i*i\in\sqrt{-1}*\sqrt{-1}$) [/mm]

Viele Grüße,
Marc

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]