matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenKombinatorikWieviele Differenzen aus acht
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Kombinatorik" - Wieviele Differenzen aus acht
Wieviele Differenzen aus acht < Kombinatorik < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wieviele Differenzen aus acht: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:50 Fr 12.12.2014
Autor: notinX

Hallo,

ich habe Kombinatorik in der Schule schon nicht gemocht und damals auch nicht wirklich verstanden. Meine Hoffnung, damit nie wieder etwas zu tun zu haben hat sich leider nicht bewahrheitet. Hier mein Problem:
Ich habe acht verschiedene, aufsteigende Werte [mm] $a_1,\ldots ,a_8$ [/mm] mit [mm] $a_1 Ich glaube, das nennt man Permutationen, aber bei der Frage ob das jetzt mit oder ohne "zurücklegen" ist bin ich schon überfordert.
Kann mir jemand helfen?

Gruß,

notinX

        
Bezug
Wieviele Differenzen aus acht: Antwort
Status: (Antwort) fertig Status 
Datum: 14:17 Fr 12.12.2014
Autor: Arvi-Aussm-Wald

Hallo, 
> ich habe Kombinatorik in der Schule schon nicht gemocht und
> damals auch nicht wirklich verstanden. Meine Hoffnung,
> damit nie wieder etwas zu tun zu haben hat sich leider
> nicht bewahrheitet.

Das kenn ich auch, manchmal wird man von der Vergangenheit schnell wieder eingeholt.. :D
Hier mein Problem:

> Ich habe acht verschiedene, aufsteigende Werte [mm]a_1,\ldots ,a_8[/mm]
> mit [mm]a_1
> unterschiedliche Möglichkeiten es gibt positive
> Differenzen [mm]d_{ij}=a_j-a_i[/mm] ungleich 0, also [mm]i\neq j[/mm] zu
> bilden.

Ok, du willst nur positive Differenzen, also gilt aufgrund der aufsteigenden Ordnung [mm]a_{j}>a_{i}[/mm]

> Ich glaube, das nennt man Permutationen, aber bei der
> Frage ob das jetzt mit oder ohne "zurücklegen" ist bin ich
> schon überfordert.

Das kann man sich eigentlich recht leicht überlegen. Nehmen wir einfach mal an, dass die a alle Zahlen von 1 bis 8 darstellen.
Wie viele Differenzen gibt es dann beginnend mit der 8? Richtig! 7 Stück, nämlich 8-1, 8-2, 8-3, 8-4, 8-5, 8-6 und 8-7.

Wie viele Differenzen gibt es z.B. für 4? Richtig! 3, nämlich  4-3, 4-2, 4-1.

Für jedes [mm] a_{i} [/mm] gibt es also i-1 Möglichkeiten

> Kann mir jemand helfen?

>

> Gruß,

>

> notinX

Bezug
                
Bezug
Wieviele Differenzen aus acht: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:31 Fr 12.12.2014
Autor: notinX

Klar, das Ergebnis ist einfach die Summe [mm] $\sum_{i=1}^{k-1}n$ [/mm] wenn k die Anzahl der Werte, in meinem Fall $k=8$ und [mm] $n=1,2,3,\ldots$ [/mm] ist.
Du solltest Lehrer werden ;P

Danke.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]