Winkel richtig ausrechnen?! < komplexe Zahlen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 13:33 Di 31.08.2010 | Autor: | bOernY |
Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
Aufgabe | Die in der kartesischen Form gegeben komplexen Zahlen sind in die trigonometrische und Euler'sche Form umzurechnen. Wie lauten die konjugiert komplexen Zahlen?
$z_1=4,5-2,4i$ |
Also ich habe folgende Formeln zu der Umrechnung:
$r=\wurzel{x^2 + y^2$
$x=r*cos(\varphi) \gdw \varphi=arccos(\bruch{x}{r})$
$y=r*sin(\varphi) \gdw \varphi=arcsin(\bruch{y}{r})$
$r_1=5,1$
So jetzt fängts an schwierig zu werden.
$4,5=5,1*cos(\varphi) \gdw \varphi=arccos(\bruch{4,5}{5,1})=28,07$
$-2,4=5,1*sin(\varphi) \gdw \varphi=arcsin(\bruch{-2,4}{5,1})=-28,07$
Welchen der beiden Winkel nehme ich denn jetzt?
Und was mich noch mehr durcheinander bringt ist, dass in der Lösung keiner dieser beiden Zahlen steht.
Die Lösung wäre nämlich: $z_1=5,1 * e^{i331,93}$
Allerdings ist die konjugiert komplexe Zahl auf einmal $z_1=5,1 * e^{i28,07}$
Irgendwie bringt mich das alles dureinander.
Was genau mache ich falsch?
|
|
|
|
Hallo bOernY,
es gilt doch [mm] $-28,07^\circ [/mm] = [mm] 331,93^\circ$, [/mm] dann stimmst du doch mit der Lösung überein :)
MFG,
Gono.
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 13:48 Di 31.08.2010 | Autor: | bOernY |
Achso!
Also das heißt ich muss beachten in welchem Quadranten sich die komplexe Zahl befindet, oder?
Und bestenfalls geht der Winkel dann im Gegenuhrzeigersinn, also mathematisch positiv, richtig?
|
|
|
|
|
Huhu,
nene, der Winkel gibt eindeutig an, in welchem Quadranten sich die komplexe Zahl befindet.
0° - 90° : 1. Quadrant
90° - 180° : 2. Quadrant
usw.
usw.
Ich vermute mal, deine Verwirrung kommt daher:
> $ [mm] 4,5=5,1\cdot{}cos(\varphi) \gdw \varphi=arccos(\bruch{4,5}{5,1})=28,07 [/mm] $
> $ [mm] -2,4=5,1\cdot{}sin(\varphi) \gdw \varphi=arcsin(\bruch{-2,4}{5,1})=-28,07 [/mm] $
Bedenke aber, dass gilt [mm] $\cos(\varphi) [/mm] = [mm] \cos(-\varphi)$, [/mm] d.h. korrekterweise müsste dort in der ersten Zeile stehen
> $ [mm] 4,5=5,1\cdot{}cos(\pm\varphi) \gdw \pm\varphi=arccos(\bruch{4,5}{5,1})=28,07 [/mm] $
Was dann auch konsequent mit dem unteren wär
Und du kommst auf die korrekte Lösung -28,07°
Da man aber positive Winkel haben möchte, addiert man halt einfach 360° dazu und erhält den gesuchten Wert.
Erinner dich mal daran, dass alle Winkel gleich sind, die sich um ein Vielfaches von 360° unterscheiden.
MFG,
Gono.
|
|
|
|