Winkelbeschleunigung < Physik < Naturwiss. < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 12:52 Fr 10.11.2006 | Autor: | Dolph667 |
Aufgabe | Sie befinden sich auf dem Rummelplatz in einem Rotor (rotierender Zylinder, bei dem Sie durch Zentrifugalkraft an die Außenwand gedrückt werden). Bei einer Winkelgeschwindigkeit von 3,4 rad/s merken Sie, dass Sie eher ein Translations- als Rotationsmensch sind. Der Besitzer des Rotors sieht Ihnen das ebenfalls an und bremst den Rotor innerhalb von 20 Umdrehungen mit konstanter Winkelbeschleunigung auf 2 rad/s ab. Wie lange dauert das Abbremsen (physikalische und nicht gefühlte Zeit)? |
Also mein Problem ist die Winkelbeschleunigung. Ich komme einfach nicht drauf wie ich die Zeit da raus krieg. Ich weiß ja das die Winkelgeschwindigkeit innerhalb von 20 Umdrehungen um 1,4 rad/s abfällt. Aber wie lange dauern diese 20 Umdrehungen bei nicht konstanter Winkelgeschwindigkeit?
Wenn mir jemand einen kleinen Denkanstoß geben könnte wär das echt prima, denn wenn ich die Winkelbeschleunigung erst mal hab, ist der Rest kein Problem mehr.
Vielen Dank im Voraus
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 13:09 Fr 10.11.2006 | Autor: | leduart |
Hallo dolph
Mit Winkelgeschw. und Winkelbeschl. geht man um wie mit normalen Beschleunigungen: also:
v=a*t entspricht [mm] \omega=\alpha*t [/mm] ( [mm] a,\alpha=const)
[/mm]
[mm] s(t)=v(0)*t+a/2*t^2+s(0) [/mm] entspricht [mm] \phi(t)=\omega(0)*t+\alpha/2*t^2+\phi(0)
[/mm]
20 Umdrehungen heisst [mm] \phi=20*2\pi
[/mm]
Ich hoffe, das ist alles, was du brauchst.
Gruss leduart
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 13:51 Fr 10.11.2006 | Autor: | Dolph667 |
Ist das richtig, dass bei der 2. Formel ein t weniger ist?
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 13:55 Fr 10.11.2006 | Autor: | Herby |
Hallo,
> Ist das richtig, dass bei der 2. Formel ein t weniger ist?
>
nein, sicher ein Tippfehler, schau dir die Einheit von [mm] \omega [/mm] an, dann weißt du es
Liebe Grüße
Herby
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 19:49 Sa 11.11.2006 | Autor: | crash |
Wie komme ich da auf die Winkelbeschleunigung? Braucht man die überhaupt um die Aufgabe zu lösen?
Wenn ich die Formel nämlich nach alpha umstelle, hab ich immernoch ein t drin, ich weiß die Zeit aber nicht. Wen ich nach t umstelle ist alpha noch drin :(
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 00:45 So 12.11.2006 | Autor: | leduart |
Hallo crash
Keine Ahnung was du machst!
Hast du so Aufgaben mal mit gewöhnlichen Bremswegen und Beschleunigungen gerechnet? dann gehts hier genauso!
Du musst die Winkelbeschleunigung nicht explizit ausrechnen sondern sie aus den 2 Formeln eliminieren.
2 Gleichungen, 2 Unbekannte [mm] \apha [/mm] und t.
Wenn dich eine nicht interressiert, musst du ihren Zahlenwert nicht ausrechnen. Aber da in einer Gleichung [mm] \alpha [/mm] und t vorkommen kannst dus ohne die 2 nicht lösen.
Wenn du wieder fragst, sag, was du gerechnet hast!
Gruss leduart
|
|
|
|