matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenKombinatorikWürfel-Experiment
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Kombinatorik" - Würfel-Experiment
Würfel-Experiment < Kombinatorik < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Würfel-Experiment: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:44 So 29.03.2009
Autor: chrisi99

Aufgabe
Zwei Freunde A und B würfeln. Wer zuerst eine 6 würfelt gewinnt. Wenn bekannt ist, dass A als erster Würfelt, aber B gewonnen hat; wie groß ist die Wahrscheinlichkeit Pn, dass B die 6 beim n-ten Wurfe geworfen hat?

einen wunderschönen (verregneten) Sonntag!

Kann mir hier jemand weiterhelfen?  ich habe versucht, dass über Wahrscheinlichkeit (1/6)dass die 6 fällt und Gegenwahrscheinlichkeit (5/6) dass sie nicht fällt auszurechnen... aber scheinbar ist hier schon der Ansatz falsch, da wir den Hinweis bekommen haben, eine geometrische Reihe zur Lösung heranzuziehen.

Vielleicht wisst ihr hier weiter!

LG

        
Bezug
Würfel-Experiment: Antwort
Status: (Antwort) fertig Status 
Datum: 17:08 So 29.03.2009
Autor: abakus


> Zwei Freunde A und B würfeln. Wer zuerst eine 6 würfelt
> gewinnt. Wenn bekannt ist, dass A als erster Würfelt, aber
> B gewonnen hat; wie groß ist die Wahrscheinlichkeit Pn,
> dass B die 6 beim n-ten Wurfe geworfen hat?
>  einen wunderschönen (verregneten) Sonntag!
>  
> Kann mir hier jemand weiterhelfen?  ich habe versucht, dass
> über Wahrscheinlichkeit (1/6)dass die 6 fällt und
> Gegenwahrscheinlichkeit (5/6) dass sie nicht fällt
> auszurechnen... aber scheinbar ist hier schon der Ansatz
> falsch, da wir den Hinweis bekommen haben, eine
> geometrische Reihe zur Lösung heranzuziehen.
>  
> Vielleicht wisst ihr hier weiter!
>  
> LG

Baumdiagramm für die ersten 3 bis 4 Würfe anfertigen! (Immer der Zweig mit "6" wird nicht weitergführt, der andere Zweig entsprechend wieder verzweigt.)
Gruß Abakus


Bezug
                
Bezug
Würfel-Experiment: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:23 So 29.03.2009
Autor: chrisi99

ja, das Ergebnis entspräche meiner Annahme...

aber der Hinweis mit der geometrischen Reihe macht mich stutzig...



Bezug
        
Bezug
Würfel-Experiment: Antwort
Status: (Antwort) fertig Status 
Datum: 18:22 So 29.03.2009
Autor: rabilein1


> wie groß ist die Wahrscheinlichkeit Pn,
> dass B die 6 beim n-ten Wurfe geworfen hat?

Angenommen n=1
Dann würfelt A keine Sechs und B eine Sechs.
[mm] P=\bruch{5}{6}*\bruch{1}{6} [/mm]

Angenommen n=2
Dann würfelt A keine Sechs, dann B keine Sechs, dann A keine Sechs und dann B eine Sechs.
[mm] P=\bruch{5}{6}*\bruch{5}{6}*\bruch{5}{6}*\bruch{1}{6} [/mm]

Angenommen n=3
Dann würfelt A keine Sechs, dann B keine Sechs, dann A keine Sechs, dann B keine Sechs, dann A keine Sechs, und dann B eine Sechs.
[mm] P=\bruch{5}{6}*\bruch{5}{6}*\bruch{5}{6}*\bruch{5}{6}*\bruch{5}{6}*\bruch{1}{6} [/mm]

und so weiter

Da Prinzip ist klar: Es kommen immer zwei weitere [mm] \bruch{5}{6} [/mm] dazu.

Eine entsprechende Formel kannst du wohl entwickeln.


Bezug
                
Bezug
Würfel-Experiment: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:21 So 29.03.2009
Autor: chrisi99

Hallo Rabilein!

ja, entsprächend wäre es

[mm] \mm P_n=\bruch{1}{6} (\bruch{5}{6})^{2n-1} [/mm]


die Wahrscheinlichkeiten wären dann:

P1=13,8%
P2=9,65
P3=6,7
.
.
.

das könnte ich natürlich entsprechend in eine geometrische Reihe entwickeln:

[mm] \mm \summe_{i=1}^{\infty}x^{i} =\bruch{1}{1-x} =\bruch{1}{1-5/6}=6 [/mm]

mit dem Vorfaktor 1/6 ergibt das genau 1 (=100%)... könnte das der "Hinweis" sein der uns gegeben wurde?

LG



Bezug
                        
Bezug
Würfel-Experiment: Antwort
Status: (Antwort) fertig Status 
Datum: 19:45 So 29.03.2009
Autor: abakus


> Hallo Rabilein!
>  
> ja, entsprächend wäre es
>  
> [mm]\mm P_n=\bruch{1}{6} (\bruch{5}{6})^{2n-1}[/mm]
>  
>
> die Wahrscheinlichkeiten wären dann:
>  
> P1=13,8%
>  P2=9,65
>  P3=6,7
>  .
>  .
>  .
>  
> das könnte ich natürlich entsprechend in eine geometrische
> Reihe entwickeln:
>  
> [mm]\mm \summe_{i=1}^{\infty}x^{i} =\bruch{1}{1-x} =\bruch{1}{1-5/6}=6[/mm]
>  
> mit dem Vorfaktor 1/6 ergibt das genau 1 (=100%)... könnte
> das der "Hinweis" sein der uns gegeben wurde?

Was den Hinweis betrifft, ja.
Da in deiner Summe aber nur die Potenzen von 5/6 mit ungeraden Exponenten vorkommen, kannst du nicht alles addieren.
Gruß Abakus

>  
> LG
>  
>  


Bezug
                                
Bezug
Würfel-Experiment: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:16 So 29.03.2009
Autor: chrisi99

stimmt...

kann ich hier eine Indextransformation machen auf i=(2k-1)?...

Bezug
                                        
Bezug
Würfel-Experiment: Antwort
Status: (Antwort) fertig Status 
Datum: 21:01 So 29.03.2009
Autor: MathePower

Hallo chrisi99,

> stimmt...
>
> kann ich hier eine Indextransformation machen auf
> i=(2k-1)?...


Schreibe Dir mal das so auf:

[mm]\left( \ \bruch{5}{6} \ \right)^{1}+\left( \ \bruch{5}{6} \ \right)^{3}+\left( \ \bruch{5}{6} \ \right)^{5}+ \cdots[/mm]

[mm]=\bruch{5}{6}*\left( \ \bruch{5}{6} \ \right)^{0}+\bruch{5}{6}*\left( \ \bruch{5}{6} \ \right)^{2}+\bruch{5}{6}*\left( \ \bruch{5}{6} \ \right)^{4} + \cdots[/mm]


Gruß
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]