matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikWürfelaufgabe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Stochastik" - Würfelaufgabe
Würfelaufgabe < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Würfelaufgabe: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 13:30 Di 14.11.2006
Autor: mathmetzsch

Aufgabe
Ein fairer Würferl wird [mm] n\ge [/mm] 3 mal geworfen. Sei [mm] A_{ij} [/mm] das Ereignis, dass der i-te und j-te Wurf dasselbe Ereignis haben. Man zeige, dass [mm] A_{ij} (1\le [/mm] i < j [mm] \le [/mm] n) sind paarweise, aber nicht insgesamt, unabhängig.  

Hallo,

ich bitte um Hilfe bei der vorliegenden Stochastik-Aufgabe. Was unabhängig ist, ist mir klar. A,B unabhängig [mm] \gdw[/mm]  [mm]P(A\cap B)=P(A)*P(B)[/mm]. Die Wahrscheinlichkeit irgendeines Ereignisses [mm] P(A_{i}) [/mm] kann ja eigentlich nur 1/6 sein. Bleibt also die Frage, was [mm]A\cap B[/mm] bzw. [mm]P(A\cap B)[/mm]. Hat da einer ne Idee? Und wie zeige ich die insgesamte NIcht-Unabhängigkeit?

Bitte um Hilfe.

Viele Grüße
Daniel

        
Bezug
Würfelaufgabe: Antwort
Status: (Antwort) fertig Status 
Datum: 13:46 Di 14.11.2006
Autor: DirkG

Hallo Daniel,

im ersten Teil musst du zeigen [mm] $P(A_{ij} \cap A_{kl}) [/mm] = [mm] P(A_{ij}) \cdot P(A_{kl})$ [/mm] für alle [mm] $1\leq i
Der zweite Teil ist einfacher: Zeige einfach [mm] $P(A_{12}\cap A_{13} \cap A_{23}) \neq P(A_{12}) \cdot P(A_{13}) \cdot P(A_{23})$, [/mm] damit liegt keine Unabhängigkeit vor.

Gruß,
Dirk

Bezug
                
Bezug
Würfelaufgabe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:37 Di 14.11.2006
Autor: mathmetzsch

Hallo Dirk,

ich danke dir für deine Antwort. Mir ist aber nicht ganz klar, wie der Schnitt von zwei solchen Elementen aussieht.
Was ist denn [mm] P(A_{12}\cap A_{13} \cap A_{23}) [/mm] ? Bzw. was ist denn [mm] P(A_{ij})? [/mm] Welche Wahrscheinlichkeit hat denn ein Ereignis der Form?

Bitte noch mal um Hilfe.
Grüße, Daniel

Bezug
                        
Bezug
Würfelaufgabe: Antwort
Status: (Antwort) fertig Status 
Datum: 15:36 Do 16.11.2006
Autor: jbulling

Du kannst Deine Aufgabenstellung so modellieren:

[mm]N_6:={1,2,...6}[/mm] sei die Augenzahl eines Wurfes.
n die Zahl der Würfe, dann ist das Ergebnis eines n-maligen Wurfes also ein Element von
[mm] (N_6)^n [/mm] und Deine zu untersuchenden Ereignisse sind Teilmengen dieser Menge

[mm]A_{ij} \in (N_6)^n[/mm]

Du kannst also die Schnittmenge wie üblich bilden. Für n=3 gilt ja z.B. (wenn Du (a,b,c,...) so interpretierst, dass a die Augenzahl beim ersten Wurf, b die Augenzahl beim zweiten Wurf und c die Augenzahl beim dritten Wurf ist.

[mm]\{(1,1,1), (1, 1, 2), (1,1,3), (2,2,1), (2,2,2)\} \subset A_{12}[/mm]

und

[mm]\{(1,1,1),(2,1,1),(1,2,2)\} \subset A_{23}[/mm]

also gilt

[mm]\{(1,1,1), (2,2,2)\} \subset (A_{12} \cap A_{23})[/mm]

Gruß
Jürgen



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]