matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitstheorieWürfelaufgabe/diskreter Raum
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Wahrscheinlichkeitstheorie" - Würfelaufgabe/diskreter Raum
Würfelaufgabe/diskreter Raum < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Würfelaufgabe/diskreter Raum: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 17:09 Do 24.09.2009
Autor: SusanneK

Aufgabe
Sei [mm] k \in \{2,3\} [/mm]
1) Geben Sie einen diskreten W-Raum [mm] (\Omega_k,\mathcal{P}(\Omega_k),P_k) [/mm], der den k-fachen Wurf mit einem fairen Würfel modelliert.
2) Ist es wahrscheinlicher, in zwei Würfen mindestens eine durch 2 teilbare Zahl zu würfeln als in drei Würfen mindestens eine durch 3 teilbare Augenzahl  ?

Ich habe diese Frage in keinem anderen Forum gestellt.

Hallo,
ist mein Ansatz richtig:
Zu 1)
k=2, dann ist [mm] \Omega=\IN_6 x \IN_6=\{(i,j) | i,j \in \IN_6 \} [/mm] eine abzählbare Menge und die Anzahl der Elemente ist 36.
(Oder ist (1,4) das Gleiche wie (4,1) ?)
k=3 ergibt dann 6x6x6=216 Elemente.
P ist das W-Maß. P ist größer 0, [mm] P(\Omega)=1 [/mm].

Die sigma-Additivität ist gegeben, wenn (4,1) ungleich (1,4) ist - stimmt das ?

Zu 2)
Die Anzahl der geraden Augenzahlen bei 2 Würfen ist 18, damit ist die Wahrscheinlichkeit [mm] \bruch{18}{36} = \bruch{1}{2} [/mm].
Die Anzahl der durch 3 teilbaren Augenzahlen bei 3 Würfen ist 72, damit ist die Wahrscheinlichkeit [mm] \bruch{72}{216} = \bruch{1}{3} [/mm].

Stimmt das ?

Danke, Susanne.

        
Bezug
Würfelaufgabe/diskreter Raum: zu 2)
Status: (Antwort) fertig Status 
Datum: 17:35 Do 24.09.2009
Autor: ms2008de

Hallo,
Ich hab bisher noch kein Stochastik als Vorlesung gehört, daher kann ich dir nur die 2) beantworten:

>  2) Ist es wahrscheinlicher, in zwei Würfen mindestens
> eine durch 2 teilbare Zahl zu würfeln als in drei Würfen
> mindestens eine durch 3 teilbare Augenzahl  ?
> Zu 2)
>  Die Anzahl der geraden Augenzahlen bei 2 Würfen ist 18,
> damit ist die Wahrscheinlichkeit [mm]\bruch{18}{36} = \bruch{1}{2} [/mm].
>  
> Die Anzahl der durch 3 teilbaren Augenzahlen bei 3 Würfen
> ist 72, damit ist die Wahrscheinlichkeit [mm]\bruch{72}{216} = \bruch{1}{3} [/mm].

So wie ich es verstehe, kommt es hierbei nicht auf die Summe der Augenzahlen der Würfel an, das hast du glaub ich gemacht.
Man geht hier schlecht über das Gegenereignis: Die Wahrscheinlichkeit in einem Wurf eine Augenzahl zu zu würfeln, die nicht 2 teilbar ist, ist [mm] \bruch{3}{6} [/mm] = [mm] \bruch{1}{2}. [/mm] Also ist die Wahrscheinlichkeit in 2 Würfen keine durch 2 teilbare Zahl zu würfeln: [mm] \bruch{3}{6} [/mm] * [mm] \bruch{3}{6} [/mm] = [mm] \bruch{9}{36}. [/mm] Also ist die Wahrscheinlichkeit mindestens eine durch 2 teilbare Zahl zu würfeln:  1- [mm] \bruch{9}{36} [/mm] = [mm] \bruch{27}{36}= \bruch{3}{4}. [/mm]
Analog sollte das dann für die durch 3 teilbaren Zahlen gehen: ( [mm] \bruch{4}{6}) [/mm] ^{3}=  [mm] \bruch{8}{27}. [/mm]
Also ist die Wahrscheinlichkeit in 3 Würfen mindestens eine durch 3 teilbare Zahl zu würfeln: 1- [mm] \bruch{8}{27} =\bruch{19}{27}. [/mm]
Also ist es offensichtlich wahrscheinlicher in 2 Würfen mindestens eine durch 2 teilbare Zahlzu würfeln als in 3 Würfen eine durch 3 teilbare.

Viele Grüße

Bezug
                
Bezug
Würfelaufgabe/diskreter Raum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:12 Do 24.09.2009
Autor: SusanneK

Hallo ms2008de,
vielen Dank für deine Hilfe !

> So wie ich es verstehe, kommt es hierbei nicht auf die
> Summe der Augenzahlen der Würfel an, das hast du glaub ich
> gemacht.
>  Man geht hier schlecht über das Gegenereignis: Die
> Wahrscheinlichkeit in einem Wurf eine Augenzahl zu zu
> würfeln, die nicht 2 teilbar ist, ist [mm]\bruch{3}{6}[/mm] =
> [mm]\bruch{1}{2}.[/mm] Also ist die Wahrscheinlichkeit in 2 Würfen
> keine durch 2 teilbare Zahl zu würfeln: [mm]\bruch{3}{6}[/mm] *
> [mm]\bruch{3}{6}[/mm] = [mm]\bruch{9}{36}.[/mm] Also ist die
> Wahrscheinlichkeit mindestens eine durch 2 teilbare Zahl zu
> würfeln:  1- [mm]\bruch{9}{36}[/mm] = [mm]\bruch{27}{36}= \bruch{3}{4}.[/mm]
>  
> Analog sollte das dann für die durch 3 teilbaren Zahlen
> gehen: ( [mm]\bruch{4}{6})[/mm] ^{3}=  [mm]\bruch{8}{27}.[/mm]
>  Also ist die Wahrscheinlichkeit in 3 Würfen mindestens
> eine durch 3 teilbare Zahl zu würfeln: 1- [mm]\bruch{8}{27} =\bruch{19}{27}.[/mm]
>  
> Also ist es offensichtlich wahrscheinlicher in 2 Würfen
> mindestens eine durch 2 teilbare Zahlzu würfeln als in 3
> Würfen eine durch 3 teilbare.
>  

Ja, du hast recht, ich habe aus allen 6x6 Kombinationen die geraden Augenzahlen ausgewählt und das war eigentlich nicht gefragt - danke !

Ich kann nachvollziehen, dass deine Lösung richtig ist.

Aber grundsätzlich habe ich noch ein Verständnisproblem:
Es ist doch die Wahrscheinlichkeit beim Würfeln für eine gerade Zahl gleich gross wie für eine ungerade Zahl.
Geht man bei solchen Ereignissen immer über das Gegenereignis, weil wenn im 1.Wurf bereits GERADE gewürfelt wurde, dann ist der 2.Wurf egal, und wenn nicht, dann hat man im 2.Versuch wieder eine 50 % Chance ?

Danke, Susanne.

Bezug
                        
Bezug
Würfelaufgabe/diskreter Raum: Antwort
Status: (Antwort) fertig Status 
Datum: 18:26 Do 24.09.2009
Autor: ms2008de

Hallo,

>  
> > So wie ich es verstehe, kommt es hierbei nicht auf die
> > Summe der Augenzahlen der Würfel an, das hast du glaub ich
> > gemacht.
>  >  Man geht hier schlecht über das Gegenereignis: Die
> > Wahrscheinlichkeit in einem Wurf eine Augenzahl zu zu
> > würfeln, die nicht 2 teilbar ist, ist [mm]\bruch{3}{6}[/mm] =
> > [mm]\bruch{1}{2}.[/mm] Also ist die Wahrscheinlichkeit in 2 Würfen
> > keine durch 2 teilbare Zahl zu würfeln: [mm]\bruch{3}{6}[/mm] *
> > [mm]\bruch{3}{6}[/mm] = [mm]\bruch{9}{36}.[/mm] Also ist die
> > Wahrscheinlichkeit mindestens eine durch 2 teilbare Zahl zu
> > würfeln:  1- [mm]\bruch{9}{36}[/mm] = [mm]\bruch{27}{36}= \bruch{3}{4}.[/mm]
>  
> >  

> > Analog sollte das dann für die durch 3 teilbaren Zahlen
> > gehen: ( [mm]\bruch{4}{6})[/mm] ^{3}=  [mm]\bruch{8}{27}.[/mm]
>  >  Also ist die Wahrscheinlichkeit in 3 Würfen mindestens
> > eine durch 3 teilbare Zahl zu würfeln: 1- [mm]\bruch{8}{27} =\bruch{19}{27}.[/mm]
>  
> >  

> > Also ist es offensichtlich wahrscheinlicher in 2 Würfen
> > mindestens eine durch 2 teilbare Zahlzu würfeln als in 3
> > Würfen eine durch 3 teilbare.
>  >  
> Ja, du hast recht, ich habe aus allen 6x6 Kombinationen die
> geraden Augenzahlen ausgewählt und das war eigentlich
> nicht gefragt - danke !
>  
> Ich kann nachvollziehen, dass deine Lösung richtig ist.
>  
> Aber grundsätzlich habe ich noch ein Verständnisproblem:
>  Es ist doch die Wahrscheinlichkeit beim Würfeln für eine
> gerade Zahl gleich gross wie für eine ungerade Zahl.
>  Geht man bei solchen Ereignissen immer über das
> Gegenereignis, weil wenn im 1.Wurf bereits GERADE
> gewürfelt wurde, dann ist der 2.Wurf egal, und wenn nicht,
> dann hat man im 2.Versuch wieder eine 50 % Chance ?

Man geht deshalb über das Gegenereignis weil ja danach gefragt ist, wie groß die Wahrscheinlichkeit ist, mindestens einmal 2, 4 oder 6 zu würfeln bzw. 3 oder 6 zu würfeln, da gehts dann bei mehreren Würfen immer leichter über das Gegenereignis, dass die Zahl kein Mal gewürfelt wird.
Aber man könnte es natürlich auch so machen, wie du eben geschrieben hast.
In der Schule wird zum Beispiel ganz gerne die Aufgabe gestellt, wie groß die Wahrscheinlichkeit ist, bei 6-maligem Würfeln mit einem Würfeln mindestens einmal eine 6 zu würfeln.  Schüler lassen sich dann ganz gerne davon blenden, dass der Erwartungswert für die Anzahl der Augenzahl 6 = 1 ist, und nehmen dass schonmal als Wahrscheinlichkeit.

Viele Grüße

Bezug
                                
Bezug
Würfelaufgabe/diskreter Raum: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:29 Do 24.09.2009
Autor: SusanneK

Vielen Dank für deine Hilfe !

(Ich habe aus Versehen die Eingangsfrage auf unbeantwortet gesetzt, weiss auch nicht, wie ich das ändern kann. Da aber die Frage noch nicht ganz beantwortet ist - der 1.Teil fehlt noch - ist es auch nicht so falsch)

Bezug
        
Bezug
Würfelaufgabe/diskreter Raum: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:20 Sa 26.09.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]