matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitsrechnungWurf eines Tetraeders
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Wahrscheinlichkeitsrechnung" - Wurf eines Tetraeders
Wurf eines Tetraeders < Wahrscheinlichkeit < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wurf eines Tetraeders: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:54 Di 06.12.2011
Autor: emy123

Aufgabe
Ein Tetraeder werde so lange geworfen, bis sich eine Augenzahl wiederholt.
Bestimme die Wkeit, dass dieses Ereignis genau beim 2., 3., 4., 5. Wurf eintritt.

Hallo,

für k=2:
beim 1.Wurf ist die Wkeit 4/4 bzw 1. Beim 2.Wurf ist die Wkeit 1/4 die gleiche Zahl zu werfen wie beim 1.Wurf. Also 1*1/4=0,25

für k=3:
beim 1.Wurf ist die Wkeit wieder 1. Beim 2.Wurf ist die Wkeit NICHT die gleiche Zahl zu werfen 3/4. Und die Wkeit beim 3.Wurf diese Zahl zu werfen 1/4. Also 1*0,75*0,25=0,1875
Da man beim 1.Wurf 4 Zahlen würfeln kann, muss man 0,1875*4=0,75 rechnen.

Als andere Rechnung hätte ich gerechnet:
1, keine1, 1 d.h. 0,25*0,75*0,25
2, keine2, 2
3, keine3, 3
4, keine4, 4
daraus folgt: 4*0,25*0,75*0,25=0,1875

Im Lösungsbuch steht aber 0,375 als Ergebnis. Was habe ich falsch gemacht?

emy123

        
Bezug
Wurf eines Tetraeders: Antwort
Status: (Antwort) fertig Status 
Datum: 21:33 Di 06.12.2011
Autor: chrisno

Zeichne Dir ein Baumdiagramm.

Beim ersten Wurf gibt es keine Wiederholung. Daher würde ich denn nicht erwähnen.
Bei zweiten Wurf ist die Wahrscheinlichkeit 1/4, dass die Zahl des 1. Wurfs wieder auftritt.
Der dritte Wurf ist ja nur interessant, wenn nicht beim 2. Wurf schon Schluss war.
Also muss nun alles mit 0,75 (beim 1. Wurf war nichts) multipliziert werden.
Das nun die Zahl vom 2. Wurf erscheint tritt wieder mit der Wahrscheinlichkeit 1/4 ein. Genauso kann auch mit 1/4 die Zahl des ersten Wurfes eintreten. Zusammen ergibt das 1/2. Insgesamt ist die Wahrscheinlichkeit, dass im 3. Wurf erst eine Zahl wiederholt wird also 0,5*0,75 = 0,375.
Das bis zum 3. Wurf eine Zahl wiederholt wird ist die Summe, also 0,25 + 0,375 = 0,625.

Was muss bei 5 Würfen herauskommen?

Rechne nun den 4. Wurf.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]