matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSonstigesWurzel umformen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Sonstiges" - Wurzel umformen
Wurzel umformen < Sonstiges < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wurzel umformen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:53 Sa 04.04.2009
Autor: itse

Aufgabe
Wurzel umformen: Zeigen Sie:

[mm] \wurzel{\wurzel{a} \pm \wurzel{b}} [/mm] = [mm] \wurzel{\bruch{\wurzel{a}+ \wurzel{a-b}}{2}} \pm \wurzel{\bruch{\wurzel{a}- \wurzel{a-b}}{2}} [/mm]

Hallo Zusammen,

ich habe probiert den Anfangsterm entsprechend zu erweitern:

[mm] \wurzel{\wurzel{a} \pm \wurzel{b}} \cdot{} \wurzel{a-b} [/mm] = [mm] \wurzel{\wurzel{a} \cdot{} (a-b) \pm \wurzel{b} \cdot{} (a-b)} [/mm] = [mm] \wurzel{\wurzel{a}a- \wurzel{a}b \pm \wurzel{b}a - \wurzel{b}b} [/mm]

und dann noch mit dem Endterm:

[mm] \wurzel{\bruch{\wurzel{a}+ \wurzel{a-b}}{2}} \pm \wurzel{\bruch{\wurzel{a}- \wurzel{a-b}}{2}} [/mm] = [mm] \bruch{\wurzel{\wurzel{a} + \wurzel{a-b}} \pm \wurzel{\wurzel{a}- \wurzel{a-b}}}{\wurzel{2}} [/mm]

Nur komme ich dann nicht mehr weiter, wegen dem Plus/Minus-Zeichen. Wie kann ich dies Erweitern, damit das entsprechende wegfällt?

Gruß
itse

        
Bezug
Wurzel umformen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:01 Sa 04.04.2009
Autor: Al-Chwarizmi


> [mm]\wurzel{\wurzel{a} \pm \wurzel{b}}[/mm] =
> [mm]\wurzel{\bruch{\wurzel{a}+ \wurzel{a-b}}{2}} \pm \wurzel{\bruch{\wurzel{a}- \wurzel{a-b}}{2}}[/mm]


Guten Abend,

Zuerst: deine Umformungen verstehe ich nicht.

Ich glaube, man sollte da zuerst einmal nur den einen
von zwei möglichen (Vorzeichen-) Fällen untersuchen.
Um alle die Wurzeln loszuwerden, wird man nicht darum
herum kommen, mehr als einmal zu quadrieren. Dabei
muss man natürlich auch mit den Vorzeichen sorgfältig
umgehen.

LG

Bezug
                
Bezug
Wurzel umformen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:17 Sa 04.04.2009
Autor: itse

Hallo,

dann bin ich wohl vollkommen falsch an die Sache herangegangen, nun gut auf ein Neues. Ich entscheide mich als erste für den positiven Fall:

[mm] \wurzel{\wurzel{a} + \wurzel{b}} [/mm] = [mm] \wurzel{\bruch{\wurzel{a}+ \wurzel{a-b}}{2}} [/mm] + [mm] \wurzel{\bruch{\wurzel{a}- \wurzel{a-b}}{2}} [/mm]

[mm] \wurzel{\wurzel{a} + \wurzel{b}} [/mm] = [mm] \bruch{\wurzel{\wurzel{a}+ \wurzel{a-b}}}{\wurzel{2}} [/mm] + [mm] \bruch{\wurzel{\wurzel{a}- \wurzel{a-b}}}{\wurzel{2}} [/mm]

[mm] \wurzel{2} \cdot{} \wurzel{\wurzel{a} + \wurzel{b}} [/mm] = [mm] \wurzel{\wurzel{a}+ \wurzel{a-b}} [/mm] + [mm] \wurzel{\wurzel{a}- \wurzel{a-b}} [/mm]

[mm] \wurzel{2 \wurzel{a}+ 2 \wurzel{b}} [/mm] = [mm] \wurzel{\wurzel{a}+ \wurzel{a-b}} [/mm] + [mm] \wurzel{\wurzel{a}- \wurzel{a-b}} [/mm]

[mm] [\wurzel{2 \wurzel{a}+ 2 \wurzel{b}}]² [/mm] = [mm] [\wurzel{\wurzel{a}+ \wurzel{a-b}} [/mm] + [mm] \wurzel{\wurzel{a}- \wurzel{a-b}}]² [/mm]

[mm] 2\wurzel{a}+2\wurzel{b} [/mm] = [mm] \wurzel{a}+\wurzel{a-b}+2\wurzel{(\wurzel{a}+ \wurzel{a-b})(\wurzel{a}- \wurzel{a-b})}+\wurzel{a}- \wurzel{a-b} [/mm]

[mm] 2\wurzel{a}+2\wurzel{b} [/mm] = [mm] 2\wurzel{a}+2\wurzel{a-(a-b)} [/mm]

[mm] 2\wurzel{a}+2\wurzel{b} [/mm] = [mm] 2\wurzel{a}+2\wurzel{b} [/mm]

0 = 0 (wahre Aussage)

Der negative müsste genauso gehen. Musste man dies so zeigen? Oder habe ich etwas falsch gemacht?

Gruß
itse

Bezug
                        
Bezug
Wurzel umformen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:00 Sa 04.04.2009
Autor: MathePower

Hallo itse,

> Hallo,
>  
> dann bin ich wohl vollkommen falsch an die Sache
> herangegangen, nun gut auf ein Neues. Ich entscheide mich
> als erste für den positiven Fall:
>  
> [mm]\wurzel{\wurzel{a} + \wurzel{b}}[/mm] =
> [mm]\wurzel{\bruch{\wurzel{a}+ \wurzel{a-b}}{2}}[/mm] +
> [mm]\wurzel{\bruch{\wurzel{a}- \wurzel{a-b}}{2}}[/mm]
>  
> [mm]\wurzel{\wurzel{a} + \wurzel{b}}[/mm] =
> [mm]\bruch{\wurzel{\wurzel{a}+ \wurzel{a-b}}}{\wurzel{2}}[/mm] +
> [mm]\bruch{\wurzel{\wurzel{a}- \wurzel{a-b}}}{\wurzel{2}}[/mm]
>  
> [mm]\wurzel{2} \cdot{} \wurzel{\wurzel{a} + \wurzel{b}}[/mm] =
> [mm]\wurzel{\wurzel{a}+ \wurzel{a-b}}[/mm] + [mm]\wurzel{\wurzel{a}- \wurzel{a-b}}[/mm]
>  
> [mm]\wurzel{2 \wurzel{a}+ 2 \wurzel{b}}[/mm] = [mm]\wurzel{\wurzel{a}+ \wurzel{a-b}}[/mm]
> + [mm]\wurzel{\wurzel{a}- \wurzel{a-b}}[/mm]
>  
> [mm][\wurzel{2 \wurzel{a}+ 2 \wurzel{b}}]²[/mm] =
> [mm][\wurzel{\wurzel{a}+ \wurzel{a-b}}[/mm] + [mm]\wurzel{\wurzel{a}- \wurzel{a-b}}]²[/mm]
>  
> [mm]2\wurzel{a}+2\wurzel{b}[/mm] =
> [mm]\wurzel{a}+\wurzel{a-b}+2\wurzel{(\wurzel{a}+ \wurzel{a-b})(\wurzel{a}- \wurzel{a-b})}+\wurzel{a}- \wurzel{a-b}[/mm]
>  
> [mm]2\wurzel{a}+2\wurzel{b}[/mm] = [mm]2\wurzel{a}+2\wurzel{a-(a-b)}[/mm]
>  
> [mm]2\wurzel{a}+2\wurzel{b}[/mm] = [mm]2\wurzel{a}+2\wurzel{b}[/mm]
>  
> 0 = 0 (wahre Aussage)
>  
> Der negative müsste genauso gehen. Musste man dies so
> zeigen? Oder habe ich etwas falsch gemacht?


Alles richtig. Der negative geht analog.


>  
> Gruß
>  itse


Gruß
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]