matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenZahlentheorieZPE-Ring
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Zahlentheorie" - ZPE-Ring
ZPE-Ring < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

ZPE-Ring: Tipp
Status: (Frage) beantwortet Status 
Datum: 14:50 Mo 21.09.2009
Autor: kleine_ente_nora

Ich habe einen Satz und seinen Beweis gefunden, verstehe aber nicht, warum dies der Beweis zu dem Satz ist. Vielleicht kann mir das jemand erklären.
Satz: Für [mm] n\equiv1(mod [/mm] 4) ist [mm] \IZ[\wurzel{n}] [/mm] kein ZPE-Ring.
Beweis: [mm] x^{2}-x+\bruch{1-n}{4} \in \IZ[\wurzel{n}][x] [/mm] hat die Nullstelle [mm] \bruch{1+\wurzel{n}}{2} \in \IQ(\wurzel{n}) [/mm] \ [mm] \IZ[n]. [/mm]
Davor haben wir festgestellt, dass [mm] \IQ(\wurzel{n}) [/mm] ein Quotientenkörper von [mm] \IZ[\wurzel{n}] [/mm] ist.
Aber wieso ist nun der Beweis ein Beweis für den Satz? Gibt es irgendeinen Satz mit ZPE-Ringen und Nullstellen?

        
Bezug
ZPE-Ring: Antwort
Status: (Antwort) fertig Status 
Datum: 17:01 Mo 21.09.2009
Autor: felixf

Hallo!

> Ich habe einen Satz und seinen Beweis gefunden, verstehe
> aber nicht, warum dies der Beweis zu dem Satz ist.
> Vielleicht kann mir das jemand erklären.
>  Satz: Für [mm]n\equiv1(mod[/mm] 4) ist [mm]\IZ[\wurzel{n}][/mm] kein
> ZPE-Ring.
>  Beweis: [mm]x^{2}-x+\bruch{1-n}{4} \in \IZ[\wurzel{n}][x][/mm] hat
> die Nullstelle [mm]\bruch{1+\wurzel{n}}{2} \in \IQ(\wurzel{n})[/mm]
> \ [mm]\IZ[n].[/mm]
>  Davor haben wir festgestellt, dass [mm]\IQ(\wurzel{n})[/mm] ein
> Quotientenkörper von [mm]\IZ[\wurzel{n}][/mm] ist.
>  Aber wieso ist nun der Beweis ein Beweis für den Satz?
> Gibt es irgendeinen Satz mit ZPE-Ringen und Nullstellen?

ZPE-Ringe sind ganz-abgeschlossen (im Quotientenkoerper), und der obige Satz liefert ein Beispiel eines Elementes des Quotientenkoerpers, welches ganz ueber [mm] $\IZ[\sqrt{n}]$ [/mm] ist, aber nicht in [mm] $\IZ[\sqrt{n}]$ [/mm] liegt.

LG Felix


Bezug
                
Bezug
ZPE-Ring: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 23:11 Mo 21.09.2009
Autor: kleine_ente_nora

Was heißt denn, ein Element ist ganz über den Ring, aber nicht in ihm? Heißt das, weil die Nullstelle nicht in [mm] \IZ[\wurzel{n}] [/mm] liegt, die Gleichung an sich aber schon im dazugehörigen Ring um x, kann die Voraussetzung nicht stimmen? Und was hat das mit dem Modulo zu tun? Irgendwie seh ich nicht durch ... Aber danke, dass jemand versucht es zu erklären ... Danke.

Bezug
                        
Bezug
ZPE-Ring: Antwort
Status: (Antwort) fertig Status 
Datum: 05:34 Di 22.09.2009
Autor: felixf

Hallo!

> Was heißt denn, ein Element ist ganz über den Ring, aber
> nicht in ihm?

Na, was es bedeutet, das ein Element ganz ist, solltest du wissen. Eventuell habt ihr das ganze ja auch anders bezeichnet, aber ich kann leider nicht hellsehen wie es in eurer Vorlesung vorkam.

> Heißt das, weil die Nullstelle nicht in
> [mm]\IZ[\wurzel{n}][/mm] liegt, die Gleichung an sich aber schon im
> dazugehörigen Ring um x,

Ja (und es geht um Nullstellen im Quotientenkoerper). Und die Gleichung ist normiert.

> kann die Voraussetzung nicht stimmen?

Ja, weil aus ZPE-Ring folgt dass dies nicht der Fall sein kann.

> Und was hat das mit dem Modulo zu tun?

Was fuer ein Modulo? Ich sehe da nur eine Mengen-Differenz.

LG Felix


Bezug
                                
Bezug
ZPE-Ring: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 11:32 Di 22.09.2009
Autor: kleine_ente_nora

In dem Satz ist der Fall doch auf [mm] n\equiv1(mod4) [/mm] eingegrenzt. Wozu braucht man diese Eingrenzung? Das sehe ich noch nicht ... Auch wenn der Satz sonst natürlich wenig Sinn machen würde, denn es gibt ja schon Fälle wo dies ein ZPE-Ring ist. Aber spielt diese Einschränkung im Beweis irgendeine Rolle?
Und danke, den Rest habe ich jetzt verstanden.
Lieben Gruß, Nora.

Bezug
                                        
Bezug
ZPE-Ring: Antwort
Status: (Antwort) fertig Status 
Datum: 21:09 Di 22.09.2009
Autor: felixf

Hallo Nora

> In dem Satz ist der Fall doch auf [mm]n\equiv1(mod4)[/mm]
> eingegrenzt. Wozu braucht man diese Eingrenzung?

Die braucht man dafuer, dass [mm] $\frac{n - 1}{4}$ [/mm] eine ganze Zahl ist. Andernfalls haettest du keine normierte Gleichung mit ganzzahligen Koeffizienten.

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]