matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperZPE-Ringe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Gruppe, Ring, Körper" - ZPE-Ringe
ZPE-Ringe < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

ZPE-Ringe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:06 Di 23.01.2007
Autor: Manu_Chemnitz

Hallo,

ich soll Beispiele und Gegenbeispiele für ZPE-Ringe finden. Meine erste Frage wäre, ob es da Standardbeispiele gibt und die zweite Frage, wie man das überhaupt beweisen kann? Also ich kenne zwar die Definition, aber ich weiß nicht so richtig, wie ich jetzt bei einem Integritätsbereich nachweisen kann, dass es ein ZPE-Ring ist..

Vielen Dank für eure Hilfe,
Manuela


        
Bezug
ZPE-Ringe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:33 Do 25.01.2007
Autor: unknown

Hallo,


kurze Antwort: Ein Gegenbeispiel findest Du bei Wikipedia unter []ZPE-Ring. In der englischen Version des Artikels sind sogar noch ein paar mehr.


Hoffe, das hilft.


Bezug
        
Bezug
ZPE-Ringe: andere Lösung
Status: (Antwort) fertig Status 
Datum: 17:47 Do 25.01.2007
Autor: mathmetzsch

Hallo,

es ist i.A. nicht so leicht zu zeigen, dass ein Ring ZPE-Ring ist. Allerdings kann man einige Sachen ausnutzen.

1. Jeder euklidische- und jeder Hauptidelaring ist ZPE-Ring. Diese Sätze kann man beweisen und findest du mit Sicherheit in jedem Algebra-Skript. Z.B. ist [mm] (\IZ,+,*) [/mm] ein euklidischer Ring, der Polynomring K[x] über einem Körper K oder [mm] \IZ[i]:=\{a+bi|a,b\in\IZ\} [/mm] auch. Beispiele für HI-Ringe findest du im Wiki-Artikel.

2. Außerdem ist in ZPE-Ringen jedes unzerlegbare Primelement und umgekehrt. So lassen sich leicht Gegenbeispiele  finden. Z.B. ist in [mm] \IZ[\wurzel{-5}] [/mm] die 2 unzerlegbar aber kein Primelement. Damit ist [mm] \IZ[\wurzel{-5}] [/mm]  kein ZPE-Ring.

Viele Grüße
Daniel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]