matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenZeigen das DGL konvex ist
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Gewöhnliche Differentialgleichungen" - Zeigen das DGL konvex ist
Zeigen das DGL konvex ist < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zeigen das DGL konvex ist: Tipp
Status: (Frage) beantwortet Status 
Datum: 21:36 So 27.11.2011
Autor: Aucuba

Aufgabe
Die Funktion y=y(x): [mm] R\to [/mm] R sei eine Lösung  der DGL [mm] y'=(1+y^{2})x [/mm] mit y(0)=0. Zeigen Sie, dass y eine konvexe Funktion ist, die ein globales Minimum für x=0 annimmt.

Hinweis: In dieser Aufgabe ist es nicht notwendig, die DGL explizit zu lösen.

Hallo Zusammen

Folgendes hab ich mir überlegt:

-Konvex bedeutet: y''>0  für alle x Element R
-globales Minimum für x=0, d.h. y'(0)=0 und y''(0)>0

Da es im Hinweis heisst, man müsse die DGL nicht explit lösen, habe ich gedacht ich könnte einfach die Funktion ableiten und schauen, ob sie die oben genannten Bedingungen erfüllt. Leider weiss ich nicht, wie man eine Funktion mit x und y ableitet (man kann ja nicht einfach einer der Beiden als Variabel betrachten, oder?)
Jetzt, weiss ich leider nicht, wie ich die Aufgabe lösen kann und wäre froh, wenn mir jemand einen Tipp geben könnte, wie man da am Besten vorgeht.

Vielen Dank für Eure Hilfe!

Gruss
Aucuba

        
Bezug
Zeigen das DGL konvex ist: Antwort
Status: (Antwort) fertig Status 
Datum: 08:24 Mo 28.11.2011
Autor: fred97


> Die Funktion y=y(x): [mm]R\to[/mm] R sei eine Lösung  der DGL
> [mm]y'=(1+y^{2})x[/mm] mit y(0)=0. Zeigen Sie, dass y eine konvexe
> Funktion ist, die ein globales Minimum für x=0 annimmt.
>  
> Hinweis: In dieser Aufgabe ist es nicht notwendig, die DGL
> explizit zu lösen.
>  Hallo Zusammen
>  
> Folgendes hab ich mir überlegt:
>  
> -Konvex bedeutet: y''>0  für alle x Element R
>  -globales Minimum für x=0, d.h. y'(0)=0 und y''(0)>0

Das bedeutet zunächst nur: lokale Minimum in x=0.


>  
> Da es im Hinweis heisst, man müsse die DGL nicht explit
> lösen, habe ich gedacht ich könnte einfach die Funktion
> ableiten und schauen, ob sie die oben genannten Bedingungen
> erfüllt. Leider weiss ich nicht, wie man eine Funktion mit
> x und y ableitet (man kann ja nicht einfach einer der
> Beiden als Variabel betrachten, oder?)


Für die Funktion y gilt doch

$ [mm] y'(x)=(1+y(x)^2)x [/mm] $

Das kann man doch prima nach x ableiten !

FRED

>  Jetzt, weiss ich leider nicht, wie ich die Aufgabe lösen
> kann und wäre froh, wenn mir jemand einen Tipp geben
> könnte, wie man da am Besten vorgeht.
>  
> Vielen Dank für Eure Hilfe!
>  
> Gruss
>  Aucuba


Bezug
                
Bezug
Zeigen das DGL konvex ist: Korrektur
Status: (Frage) beantwortet Status 
Datum: 15:17 Mo 28.11.2011
Autor: Aucuba


> Für die Funktion y gilt doch
>
> [mm]y'(x)=(1+y(x)^2)x[/mm]
>  
> Das kann man doch prima nach x ableiten !

Danke Fred! Das hatte ich völlig überlesen.

Ich erhalte y''=1+2y(x)*y'(x)*x für die 2. Ableitung, stimmt das?
y'(0)=0 ergibt auch 0=0 und für y''>0 erhalte ich: y''(0)=1

>  >  -Konvex bedeutet: y''>0  für alle x Element R
>  >  -globales Minimum für x=0, d.h. y'(0)=0 und y''(0)>0
>  
> Das bedeutet zunächst nur: lokale Minimum in x=0.


Was für eine Bedingung muss noch erfüllt werden, dass es sich um ein globales Minimum handelt?

Vielen Dank für die Hilfe!

Gruss
Aucuba

Bezug
                        
Bezug
Zeigen das DGL konvex ist: Antwort
Status: (Antwort) fertig Status 
Datum: 15:24 Mo 28.11.2011
Autor: fred97


> > Für die Funktion y gilt doch
> >
> > [mm]y'(x)=(1+y(x)^2)x[/mm]
>  >  
> > Das kann man doch prima nach x ableiten !
>  
> Danke Fred! Das hatte ich völlig überlesen.
>  
> Ich erhalte y''=1+2y(x)*y'(x)*x für die 2. Ableitung,
> stimmt das?

Nein. Es ist $y''= [mm] 1+2yy'x+y^2$ [/mm]


>  y'(0)=0 ergibt auch 0=0 und für y''>0 erhalte ich:
> y''(0)=1
>  
> >  >  -Konvex bedeutet: y''>0  für alle x Element R

>  >  >  -globales Minimum für x=0, d.h. y'(0)=0 und
> y''(0)>0
>  >  
> > Das bedeutet zunächst nur: lokale Minimum in x=0.
>  
>
> Was für eine Bedingung muss noch erfüllt werden, dass es
> sich um ein globales Minimum handelt?

Das ist eigentlich Schulstoff !!

Wir haben:

1. y(0)=0

2. für x<0 ist [mm] y'(x)=(1+y(x)^2)x [/mm] <0.  Auf ( - [mm] \infty, [/mm] 0] ist y also monoton fallend, somit ist

                  y(x) [mm] \ge [/mm] y(0)=0 für x [mm] \le [/mm] 0

3. 2. für x>0 ist [mm] y'(x)=(1+y(x)^2)x [/mm] >0.  Auf [0, [mm] \infty) [/mm] ist y also monoton steigend, somit ist

                  y(x) [mm] \ge [/mm] y(0)=0 für x [mm] \ge [/mm] 0

Fazit:   y(x) [mm] \ge [/mm] y(0)=0 für x alle x.

FRED

>  
> Vielen Dank für die Hilfe!
>  
> Gruss
> Aucuba


Bezug
                                
Bezug
Zeigen das DGL konvex ist: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:53 Mo 28.11.2011
Autor: Aucuba

Oke, danke!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]