matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSonstigesZeigen, dass Formel gilt
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Sonstiges" - Zeigen, dass Formel gilt
Zeigen, dass Formel gilt < Sonstiges < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zeigen, dass Formel gilt: 2 Formel
Status: (Frage) beantwortet Status 
Datum: 09:41 Di 12.12.2017
Autor: sancho1980

Hallo,

diesmal hab ich gleich 2 Problemchen, die aber in die gleiche Kategorie fallen.
Kann mir einer den Lösungsweg erklären, wie ich zeigen kann, dass für alle b, x, y [mm] \in \IR [/mm] mit 0 < x < y und b < 0 gilt:

1) [mm] \bruch{x}{b + x} [/mm] < [mm] \bruch{y}{b + y} [/mm]

Ich vermute, dass man irgendwie starten muss mit

x < y [mm] \Rightarrow [/mm]
[mm] \bruch{1}{x} [/mm] > [mm] \bruch{1}{y} [/mm]
[mm] \bruch{y}{b + x} [/mm] > [mm] \bruch{y}{b + y} [/mm]
[mm] \bruch{x}{b + y} [/mm] < [mm] \bruch{x}{b + x} [/mm]
[mm] \bruch{x}{y} [/mm] < [mm] \bruch{y}{x} [/mm]
b + x  < b + y

Aber irgendwie weiß ich nicht, was ich daraus weiterhin schlussfolgern kann.

2) [mm] \bruch{a * 2^{-n}}{a * 2^{-n} + b} \le \bruch{a}{b} 2^{-n} [/mm]


Danke und Gruß
Martin

        
Bezug
Zeigen, dass Formel gilt: Antwort
Status: (Antwort) fertig Status 
Datum: 09:54 Di 12.12.2017
Autor: fred97


> Hallo,
>  
> diesmal hab ich gleich 2 Problemchen, die aber in die
> gleiche Kategorie fallen.
>  Kann mir einer den Lösungsweg erklären, wie ich zeigen
> kann, dass für alle b, x, y [mm]\in \IR[/mm] mit 0 < x < y und b <
> 0 gilt:
>  
> 1) [mm]\bruch{x}{b + x}[/mm] < [mm]\bruch{y}{b + y}[/mm]

Für b<0 ist dies i.a. falsch ! Beispiel: b=-1, x=2,y=3.

Ist b>0, so stimmts:

[mm]\bruch{x}{b + x}[/mm] < [mm]\bruch{y}{b + y}[/mm] [mm] \gdw [/mm] bx+xy <by+xy [mm] \gdw [/mm] bx<by.



>  
> Ich vermute, dass man irgendwie starten muss mit
>  
> x < y [mm]\Rightarrow[/mm]
>  [mm]\bruch{1}{x}[/mm] > [mm]\bruch{1}{y}[/mm]

>  [mm]\bruch{y}{b + x}[/mm] > [mm]\bruch{y}{b + y}[/mm]

>  [mm]\bruch{x}{b + y}[/mm] <
> [mm]\bruch{x}{b + x}[/mm]
>  [mm]\bruch{x}{y}[/mm] < [mm]\bruch{y}{x}[/mm]
>  b + x  < b + y
>  
> Aber irgendwie weiß ich nicht, was ich daraus weiterhin
> schlussfolgern kann.
>  
> 2) [mm]\bruch{a * 2^{-n}}{a * 2^{-n} + b} \le \bruch{a}{b} 2^{-n}[/mm]

Was ist hier über a und b vorausgesetzt ?


>  
> Danke und Gruß
>  Martin


Bezug
                
Bezug
Zeigen, dass Formel gilt: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:14 Di 12.12.2017
Autor: sancho1980

Sorry, bei 1) ist mir ein Tippfehler unterlaufen. Es muss heißen b > 0
Bei 2 hab ich die Annahmen vergessen:

a, b, n [mm] \in \IN [/mm]

Bezug
                        
Bezug
Zeigen, dass Formel gilt: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:30 Di 12.12.2017
Autor: fred97

Zu 2): für x,y,z >0 gilt

[mm] \frac{x}{y+z} <\frac{x}{y} [/mm]

"Man vergrößert einen Bruch, indem man den Nenner verkleinert."

Bezug
                
Bezug
Zeigen, dass Formel gilt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:08 Di 12.12.2017
Autor: sancho1980


> Ist b>0, so stimmts:
>  
> [mm]\bruch{x}{b + x}[/mm] < [mm]\bruch{y}{b + y}[/mm] [mm]\gdw[/mm] bx+xy <by+xy [mm]\gdw[/mm]
> bx<by.

Kannst du das noch ein Bisschen ausführen? Ich versteh's nicht ...

Bezug
                        
Bezug
Zeigen, dass Formel gilt: Antwort
Status: (Antwort) fertig Status 
Datum: 15:15 Di 12.12.2017
Autor: fred97


>
> > Ist b>0, so stimmts:
>  >  
> > [mm]\bruch{x}{b + x}[/mm] < [mm]\bruch{y}{b + y}[/mm] [mm]\gdw[/mm] bx+xy <by+xy [mm]\gdw[/mm]
> > bx<by.
>  
> Kannst du das noch ein Bisschen ausführen? Ich versteh's
> nicht ...


Die Ungleichung [mm]\bruch{x}{b + x}[/mm] < [mm]\bruch{y}{b + y}[/mm]  muktiplizieren wir erst mit b+x durch und dann mit b+y.

Dann erhalten wir bx+xy <by+xy

kommst Du nun klar ?

Bezug
                                
Bezug
Zeigen, dass Formel gilt: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:11 Di 12.12.2017
Autor: sancho1980

Ja dankeschön :-)

Bezug
        
Bezug
Zeigen, dass Formel gilt: Antwort
Status: (Antwort) fertig Status 
Datum: 10:23 Di 12.12.2017
Autor: Diophant

Hallo,

>

> 2) [mm]\bruch{a * 2^{-n}}{a * 2^{-n} + b} \le \bruch{a}{b} 2^{-n}[/mm]

>

Ok, ich verwende deinen Hinweis, dass a, b, und n natürliche Zahlen sein sollen.

Dann geht das hier kinderleicht. Multipliziere die Ungleichung einmal mit [mm] 2^n [/mm] durch und der Beweis der Ungleichung steht so gut wie da.


Gruß, Diophant

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]