matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSonstigesZeigen, dass Formel gilt
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "School maths - Miscellaneous" - Zeigen, dass Formel gilt
Zeigen, dass Formel gilt < School maths - Miscellaneous < School < Maths <
View: [ threaded ] | ^ Forum "Sonstiges"  | ^^ all forums  | ^ Tree of Forums  | materials

Zeigen, dass Formel gilt: 2 Formel
Status: (Question) answered Status 
Date: 09:41 Di 12/12/2017
Author: sancho1980

Hallo,

diesmal hab ich gleich 2 Problemchen, die aber in die gleiche Kategorie fallen.
Kann mir einer den Lösungsweg erklären, wie ich zeigen kann, dass für alle b, x, y [mm] \in \IR [/mm] mit 0 < x < y und b < 0 gilt:

1) [mm] \bruch{x}{b + x} [/mm] < [mm] \bruch{y}{b + y} [/mm]

Ich vermute, dass man irgendwie starten muss mit

x < y [mm] \Rightarrow [/mm]
[mm] \bruch{1}{x} [/mm] > [mm] \bruch{1}{y} [/mm]
[mm] \bruch{y}{b + x} [/mm] > [mm] \bruch{y}{b + y} [/mm]
[mm] \bruch{x}{b + y} [/mm] < [mm] \bruch{x}{b + x} [/mm]
[mm] \bruch{x}{y} [/mm] < [mm] \bruch{y}{x} [/mm]
b + x  < b + y

Aber irgendwie weiß ich nicht, was ich daraus weiterhin schlussfolgern kann.

2) [mm] \bruch{a * 2^{-n}}{a * 2^{-n} + b} \le \bruch{a}{b} 2^{-n} [/mm]


Danke und Gruß
Martin

        
Bezug
Zeigen, dass Formel gilt: Antwort
Status: (Answer) finished Status 
Date: 09:54 Di 12/12/2017
Author: fred97


> Hallo,
>  
> diesmal hab ich gleich 2 Problemchen, die aber in die
> gleiche Kategorie fallen.
>  Kann mir einer den Lösungsweg erklären, wie ich zeigen
> kann, dass für alle b, x, y [mm]\in \IR[/mm] mit 0 < x < y und b <
> 0 gilt:
>  
> 1) [mm]\bruch{x}{b + x}[/mm] < [mm]\bruch{y}{b + y}[/mm]

Für b<0 ist dies i.a. falsch ! Beispiel: b=-1, x=2,y=3.

Ist b>0, so stimmts:

[mm]\bruch{x}{b + x}[/mm] < [mm]\bruch{y}{b + y}[/mm] [mm] \gdw [/mm] bx+xy <by+xy [mm] \gdw [/mm] bx<by.



>  
> Ich vermute, dass man irgendwie starten muss mit
>  
> x < y [mm]\Rightarrow[/mm]
>  [mm]\bruch{1}{x}[/mm] > [mm]\bruch{1}{y}[/mm]

>  [mm]\bruch{y}{b + x}[/mm] > [mm]\bruch{y}{b + y}[/mm]

>  [mm]\bruch{x}{b + y}[/mm] <
> [mm]\bruch{x}{b + x}[/mm]
>  [mm]\bruch{x}{y}[/mm] < [mm]\bruch{y}{x}[/mm]
>  b + x  < b + y
>  
> Aber irgendwie weiß ich nicht, was ich daraus weiterhin
> schlussfolgern kann.
>  
> 2) [mm]\bruch{a * 2^{-n}}{a * 2^{-n} + b} \le \bruch{a}{b} 2^{-n}[/mm]

Was ist hier über a und b vorausgesetzt ?


>  
> Danke und Gruß
>  Martin


Bezug
                
Bezug
Zeigen, dass Formel gilt: Mitteilung
Status: (Statement) No reaction required Status 
Date: 10:14 Di 12/12/2017
Author: sancho1980

Sorry, bei 1) ist mir ein Tippfehler unterlaufen. Es muss heißen b > 0
Bei 2 hab ich die Annahmen vergessen:

a, b, n [mm] \in \IN [/mm]

Bezug
                        
Bezug
Zeigen, dass Formel gilt: Mitteilung
Status: (Statement) No reaction required Status 
Date: 10:30 Di 12/12/2017
Author: fred97

Zu 2): für x,y,z >0 gilt

[mm] \frac{x}{y+z} <\frac{x}{y} [/mm]

"Man vergrößert einen Bruch, indem man den Nenner verkleinert."

Bezug
                
Bezug
Zeigen, dass Formel gilt: Frage (beantwortet)
Status: (Question) answered Status 
Date: 15:08 Di 12/12/2017
Author: sancho1980


> Ist b>0, so stimmts:
>  
> [mm]\bruch{x}{b + x}[/mm] < [mm]\bruch{y}{b + y}[/mm] [mm]\gdw[/mm] bx+xy <by+xy [mm]\gdw[/mm]
> bx<by.

Kannst du das noch ein Bisschen ausführen? Ich versteh's nicht ...

Bezug
                        
Bezug
Zeigen, dass Formel gilt: Antwort
Status: (Answer) finished Status 
Date: 15:15 Di 12/12/2017
Author: fred97


>
> > Ist b>0, so stimmts:
>  >  
> > [mm]\bruch{x}{b + x}[/mm] < [mm]\bruch{y}{b + y}[/mm] [mm]\gdw[/mm] bx+xy <by+xy [mm]\gdw[/mm]
> > bx<by.
>  
> Kannst du das noch ein Bisschen ausführen? Ich versteh's
> nicht ...


Die Ungleichung [mm]\bruch{x}{b + x}[/mm] < [mm]\bruch{y}{b + y}[/mm]  muktiplizieren wir erst mit b+x durch und dann mit b+y.

Dann erhalten wir bx+xy <by+xy

kommst Du nun klar ?

Bezug
                                
Bezug
Zeigen, dass Formel gilt: Mitteilung
Status: (Statement) No reaction required Status 
Date: 16:11 Di 12/12/2017
Author: sancho1980

Ja dankeschön :-)

Bezug
        
Bezug
Zeigen, dass Formel gilt: Antwort
Status: (Answer) finished Status 
Date: 10:23 Di 12/12/2017
Author: Diophant

Hallo,

>

> 2) [mm]\bruch{a * 2^{-n}}{a * 2^{-n} + b} \le \bruch{a}{b} 2^{-n}[/mm]

>

Ok, ich verwende deinen Hinweis, dass a, b, und n natürliche Zahlen sein sollen.

Dann geht das hier kinderleicht. Multipliziere die Ungleichung einmal mit [mm] 2^n [/mm] durch und der Beweis der Ungleichung steht so gut wie da.


Gruß, Diophant

Bezug
View: [ threaded ] | ^ Forum "Sonstiges"  | ^^ all forums  | ^ Tree of Forums  | materials


Alle Foren
Status vor 31m 1. Hela123
UStoc/Beweis Varianz von Summe
Status vor 1h 39m 3. mathnoob9
UWTheo/Konstruktion von ZV
Status vor 10h 43m 7. fred97
UAnaRn/Satz Implizite Funktion System
Status vor 1d 3h 36m 3. Dom_89
SDiffRech/Ableitung bilden
Status vor 1d 10h 35m 6. Dom_89
SIntRech/Partielle Integration/Substitu
^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]