matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenstochastische ProzesseZentrale Grenzwertsatz
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "stochastische Prozesse" - Zentrale Grenzwertsatz
Zentrale Grenzwertsatz < stoch. Prozesse < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "stochastische Prozesse"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zentrale Grenzwertsatz: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 18:51 Do 31.01.2008
Autor: barsch

Aufgabe
Es existiere eine Eigenschaft, die 0,2% der Bevölkerung haben.
Wir nehmen eine Stichprobe n=1000 und wollen wissen, mit welcher Wkt. mindestens 2  und höchstens 4 Menschen mit dieser Eigenschaft unter der Stichprobe sind.

Hi,

mein Ansatz ist der folgende:

[mm] \IP(2\le{X}\le{4}) [/mm]

Standardisieren: [mm] n\cdot{}p=1000*0,002=2,\sigma=\wurzel{n*p*q}=\wurzel{1,996} [/mm]

Also:

[mm] \IP(\bruch{2-2}{\wurzel{1,996}}\le{X}\le\bruch{4-2}{\wurzel{1,996}})=\Phi(\bruch{2}{\wurzel{1,996}})-\Phi(0)\approx\Phi(1,4156)-\Phi(0) [/mm]

Aus Tabelle:

[mm] \Phi(1,4156)-\Phi(0)=0,92073-0,5=0,42073 [/mm]

Also zu 42,07% befinden sich mindestens 2 und höchstens 4 Menschen mit dieser Eigenschaft unter dieser Stichprobe?!

MfG barsch



        
Bezug
Zentrale Grenzwertsatz: Antwort
Status: (Antwort) fertig Status 
Datum: 19:13 Do 31.01.2008
Autor: Walde

Hi barsch,

vom Prinzip her zwar richtig, doch ist eine Nährung der Binomialverteilung durch eine Normalverteilung nur gut, falls n*p*q>9.

Und das ist hier ja nicht der Fall. Daher empfehle ich die W'keit einfach mit der Formel für die Binomialverteilung per Hand auszurechnen. Da du nur
P(X=2)+P(X=3)+P(X=4) addieren musst, hält sich der Aufwand in Grenzen.Ich erhalte hierfür eine W'keit von ca. 0,5417. Man sieht, daß die Nährung durch die Normalverteilung zu wünschen übrig lässt.

Lg walde

Bezug
        
Bezug
Zentrale Grenzwertsatz: Antwort
Status: (Antwort) fertig Status 
Datum: 19:49 Do 31.01.2008
Autor: luis52

Moin barsch,

zwei weitere Ueberlegungen:

1) Du koenntest deine Rechnung modifizieren, indem du eine
Stetigkeitskorrektur beruecksichtigst. Diese waere dann


$ [mm] \Phi(\bruch{4+0.5-2}{\wurzel{1,996}})-\Phi(\bruch{2-0.5-2}{\wurzel{1,996}})=0.59989$ [/mm] ,

was auch nicht sehr gut ist.

2) Da hier n verhaeltnismaessig gross und p verhaeltnismaessig klein ist,
kann man auch die Approximation durch eine Poisson-Verteilung mit
[mm] $\lambda=np=2$ [/mm] erwaegen. Dann erhalte ich  0.5413, durchaus brauchbar.


vg Luis



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "stochastische Prozesse"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]