matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSchul-AnalysisZerlegen in Linearfaktoren
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Schul-Analysis" - Zerlegen in Linearfaktoren
Zerlegen in Linearfaktoren < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zerlegen in Linearfaktoren: Frage
Status: (Frage) beantwortet Status 
Datum: 14:06 So 13.03.2005
Autor: Dragan

Hallo, ich habe einen Übungszettel mit Lösungen von meinem Mathelehrer gekriegt aber mit der Aufgabe komme ich nicht zurecht.ich würde ihn ja fragen aber da ich kein mathe mehr vor der Klausur habe ist das meine letzte Hoffnung.

Aufg.: Zerlegen sie in ein Produkt aus Linearfaktoren.

[mm] f(x)=x^4-x^3-11x^2+5x+30 [/mm]

Als erstes habe ich eine Zahl für x gesucht damit die Lösung 0 wird. Für x habe ich -2 raus gekriegt. Dann habe ich die Polinomdivision angewendet und bin zu folgendem Ergebnis gekommen:

[mm] (x^4-x^3-11x^2+5x+30):(x+2)=x^3-3x^2-5x+15 [/mm]

Als nächstes muss ich ja die Nullstellen ausrechnen aber soweit ich weiß geht das nur mit der p,q Formel , aber da ich [mm] x^3 [/mm] habe ist es keine quadratische Funktion und ich habe keine Ahnung wie ich es zu einer umformen soll.ich hoffe jemand kann mir helfen.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Zerlegen in Linearfaktoren: nochmal Polynomdivision
Status: (Antwort) fertig Status 
Datum: 14:19 So 13.03.2005
Autor: informix

Hallo,
>  
> Aufg.: Zerlegen sie in ein Produkt aus Linearfaktoren.
>  
> [mm]f(x)=x^4-x^3-11x^2+5x+30 [/mm]
>  
> Als erstes habe ich eine Zahl für x gesucht damit die
> Lösung 0 wird. Für x habe ich -2 raus gekriegt. Dann habe
> ich die Polinomdivision angewendet und bin zu folgendem
> Ergebnis gekommen:
>  
> [mm](x^4-x^3-11x^2+5x+30):(x+2)=x^3-3x^2-5x+15 [/mm] [ok]
>  
> Als nächstes muss ich ja die Nullstellen ausrechnen aber
> soweit ich weiß geht das nur mit der p,q Formel , aber da
> ich [mm]x^3[/mm] habe ist es keine quadratische Funktion und ich
> habe keine Ahnung wie ich es zu einer umformen soll.ich
> hoffe jemand kann mir helfen.

na klar!
Du musst "einfach" die Polynomdivision noch einmal machen, damit du das Polynom 3. Grades noch einmal reduzierst.
Tipp: häufig ist die gesuchte (ganzzahlige) Nullstelle ein Teiler des absoluten Glieds (hier: 15); probiers mal mit [mm] \pm [/mm] 3.


Bezug
                
Bezug
Zerlegen in Linearfaktoren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:51 So 13.03.2005
Autor: Dragan

ok ich habe die polinomdivision nochmal durchgeführt:
[mm] (x^3-3x^2-5x+15):(x-3)=x^2-5 [/mm]

dann habe ich die die p,q Formel ausgerechnet da kamen als Endergenbnisse einmal 5 und einmal 0 raus:

[mm] \bruch{5}{2} \pm \wurzel{6,25} [/mm]

= [mm] \bruch{5}{2} \pm [/mm] 2,5

L1= 5
L2= 0

So weit so gut aber wie Schreibe ich das Ganze jetzt als ein Produkt aus Linearfaktoren?

Ich habe zwar die Lösung aber ich kriege es trotzdem nicht hin. die Lösung lautet:

f(x)= (x-3)*(x+2)*(x+  [mm] \wurzel{5})*(x-\wurzel{5}) [/mm]

ich würde gerne wissen wie man da drauf kommt.



Bezug
                        
Bezug
Zerlegen in Linearfaktoren: Antwort
Status: (Antwort) fertig Status 
Datum: 15:40 So 13.03.2005
Autor: marthasmith

Hallo,

für
[mm] $x^2-5 [/mm] = 0$ |+5
[mm] $x^2=5$ [/mm]
[mm] $x_1 [/mm] = [mm] \wurzel{5}$ [/mm]
[mm] $x_2 [/mm] =- [mm] \wurzel{5}$ [/mm]

und dann hast du noch [mm] x_3 [/mm] = 3 die geratene Nullstelle

Deine ursprüngliche Funktion hat den Grad 3 (höchster Exponent) also
maximal drei Nullstellen, die haben wir jetzt alle.

Die Linearfaktoren sind dann
(x-3) , wenn man 3 einsetzt kommt 0 raus
(x- [mm] \wurzel{5}) [/mm] sowie
(x+ [mm] \wurzel{5}) [/mm]
Die hängt man alle aneinander:
$f(x) = (x-3) *(x- [mm] \wurzel{5})*(x+ \wurzel{5})$ [/mm]

Der Term (x+2) deutet darauf hin, dass noch eine Nullstelle da sein soll, aber nicht bei der Funktion dritten Grades, oder war die ursprünglich vierten Grades? Die gegebene Lösung passt nicht zu der Funktion dritten Grades

gruß

marthasmith

Bezug
                                
Bezug
Zerlegen in Linearfaktoren: danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:47 So 13.03.2005
Autor: Dragan

Ok ich danke allen die mir geholfen haben und versucht haben mir zu helfen.

PS.:Ja sie war ursprünglich vierten Grades.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]