matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikZufallsvariable
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Stochastik" - Zufallsvariable
Zufallsvariable < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zufallsvariable: Tipp + Korrektur
Status: (Frage) überfällig Status 
Datum: 18:27 Mi 22.11.2006
Autor: Lee1601

Aufgabe
Auf Omega seien die Intervalle A=(0,2) , B=(1,3) sowie C=[4,5] gegeben.
Wir definieren:  X(w)= [mm] 1_{A}(w)+ [/mm] 2* [mm] 1_{B}(w) [/mm] - [mm] 1_{C}(w) [/mm]
[mm] (1_{..} [/mm] ist Indikatorfunktion)

Bestimmen Sie für jedes [mm] \alpha \in [/mm] IR die Menge [mm] {X>\alpha} [/mm] und folgern sie, dass X eine Zufallsvariable auf (Omega, [mm] \mathcal{A}, \mathcal [/mm] {P}) ist.

Hallo!

das ist der c-Teil der gesamten aufgabe. die anderen haben wir sogar alleine hinbekommen *g*
aber hier kommen wir nicht weiter. was wir haben ist:
X(w) kann die Werte -1, 0, 1, 2 und 3 annehmen
dann haben wir versucht den graphen zu malen (sind ja immer abschnitte auf intervallen) hier kommt aber auch schon das erste problem. dadurch, dass man die 1 auf 3 arten und die 2 auf 2 arten "bilden kann" haben wir da ja auch mehrere Intervalle (also Stücke im graphen) auf derselben höhe, das darf aber doch nicht sein oder? (falls ich es schaffe, hänge ich unseren graphen als anhang unten dran)
für die [mm] \alpha [/mm] s hat man ja dann die möglichkeiten:
[mm] \alpha \in [/mm]

[mm] (-\infty, [/mm] -1)
(-1 , 0)
(0,1)
(1,2)
(2,3)

und die Menge der w sind doch dann jeweils die abschnitte, die oberhalb der [mm] \alpha [/mm] liegen.
wie folgert man dann, dass X eine Zufallsvariable ist??

danke!

lg lee

hier unser graph

[a]Datei-Anhang



Dateianhänge:
Anhang Nr. 1 (Typ: doc) [nicht öffentlich]
        
Bezug
Zufallsvariable: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:20 Fr 24.11.2006
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]